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1. SIR epidemic model

In the Susceptible-Infectious-Recovered (SIR) model, we let X1 = S, X2 = I,

and X3 = R denote the numbers of individuals who are susceptible, infectious,

and recovered, respectively, and r, a 3-dimensional vector with components having

integer increments. The transition rates, W (X; r), are given by the following:
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W (X; (1, 0, 0)) = µN W (X; (−1, 0, 0)) = µX1

W (X; (−1, 1, 0)) = βX1X2 W (X; (0,−1, 1)) = γX2

W (X; (0,−1, 0)) = µX2 W (X; (0, 0,−1)) = µX3. (1.1)

The social parameters in equation (1.1) are the birth (death) rate, µ, and contact

rate, β, while γ represents the epidemiological recovery rate.

Using the definition of the master equation and the ansatz given by equa-

tion (2.1) in the main article, the Hamiltonian is given by

H(X,p) = µN(ep1 − 1) + βX1X2(e−p1+p2 − 1) + γX2(e−p2+p3 − 1)

µX1(e−p1 − 1) + µX2(e−p2 − 1) + µX3(e−p3 − 1). (1.2)

The equations of motion describing the optimal path are then given by the ODEs

Ẋ =
∂H

∂p
(X,p)

ṗ = − ∂H
∂X

(X,p), (1.3)

where the trajectory satisfies the asymptotic boundary conditions

lim
t→−∞

(X(t),p(t)) = (Xa, pa)

lim
t→∞

(X(t),p(t)) = (Xs, ps), (1.4)
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Here the starting point is the endemic zero fluctuational state, given by Xa/N =

[µ+γ
β , µ(β−µ−γ)

β(µ+γ) , 1 − µ+γ
β − µ(β−µ−γ)

β(µ+γ) ] and pa = (0, 0, 0), and the end point is the

stochastic extinct state, given by Xs/N = [1, 0, 0] and ps = [0, ln (µ+γ
β ), 0].

The solution to the boundary value problem given by equations (1.3)-(1.4) is

accompanied by the constraint that H(X,p) = 0; i.e., the optimal path lies on

a surface where the Hamiltonian is zero. Since there is no analytical solution to

the problem due its nonlinearities, we solve the problem by employing multi-point

shooting methods [Keller, 1976, Schwartz, 1983].

2. Finite-time Lyapunov exponents

We consider a velocity field v : Rn× I → Rn which is defined over the time interval

I = [ti, tf ] ⊂ R and the following system of equations:

ẋ(t; ti,x0) = v(x(t; ti,x0), t), (2.1a)

x(ti; ti,x0) = x0, (2.1b)

where x ∈ Rn, x0 ∈ Rn, and t ∈ I.

Such a continuous time dynamical system has quantities, known as Lyapunov

exponents, which are associated with the trajectory of the system in an infinite

time limit. The Lyapunov exponents measure the growth rates of the linearized

dynamics about the trajectory. To find the finite-time Lyapunov exponents (FTLE),

one computes the Lyapunov exponents on a restricted finite time interval. For the

purpose of completeness, we briefly recapitulate the derivation of the FTLE. Details

regarding the derivation along with the appropriate smoothness assumptions can
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be found in Haller [2000, 2001, 2002], Shadden et al. [2005], Lekien et al. [2007],

and Branicki & Wiggins [2010].

The integration of equations (2.1a)-(2.1b) from the initial time ti to the final

time ti + T yields the flow map φti+Tti which is defined as

φti+Tti : x0 7→ φti+Tti (x0) = x(ti + T ; ti,x0). (2.2)

Then the FTLE can be defined as

σ(x, ti, T ) =
1
|T | ln

√
λmax(∆), (2.3)

where λmax(∆) is the maximum eigenvalue of the right Cauchy-Green deformation

tensor ∆, which is given as

∆(x, ti, T ) =

(
dφti+Tti (x(t))

dx(t)

)∗(
dφti+Tti (x(t))

dx(t)

)
, (2.4)

with * denoting the adjoint.

For a given x ∈ Rn at an initial time ti, equation (2.3) gives the maximum finite-

time Lyapunov exponent for some finite integration time T (forward or backward)

and provides a measure of the sensitivity of a trajectory to small perturbations.

For such FTLE fields σ(x, ti, T ), the “ridges” of the field indicate the location

of attracting (backward time FTLE field) and repelling (forward time FTLE field)

structures. In 2D, these structures are curves which locally maximize the FTLE

field so that transverse to these curves one finds the FTLE to be a local maximum.

3. Local linear variation near the optimal path

The main heuristic argument of this section is to show the equivalence between

the path which optimizes the probability of extinction and the ridge upon which
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the finite time Lyapunov exponent (FTLE) is optimized. Although we consider

the dynamical system in one dimension, the arguments carry over to arbitrary

dimensions.

We begin by demonstrating that given an optimal path, then the FTLE attains

its maximum values on the optimal path. From the Hamiltonian or Lagrangian

equations of motion, the process that leads to extinction consists of a trajectory

that emanates from an endemic steady state xa and approaches the extinct state xs.

Since the endemic and extinct states are both regular saddles (or unstable foci) in

the variational formulations, they both have hyperbolic structure. Moreover, every

point along the trajectory connecting the the two states as t→ ±∞ also possesses a

local hyperbolic structure. As an example, consider the Langevin problem having a

scalar vector field of position V (x), which has Lagrangian L(x, ẋ) = (ẋ− V (x))2/2

to describe the action. Converting to a Hamiltonian formulation leads one to the

following equations of motion:

ẋ = p+ V (x), (3.1a)

ṗ = −pV ′(x), (3.1b)

H(x, p) =
p2

2
+ pV (x). (3.1c)

It is immediate from equations (3.1a)-(3.1c) that p = 0 is an invariant manifold.

In addition, the optimal path must lie along the H = 0 surface, which means that

in addition to the p = 0 manifold, the zero surface includes p = −2V (x).

To clarify the direction along the optimal path, we make the following assump-

tions regarding V (x):

1. V (x) is smooth,
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2. V (xa) = V (xs) = 0,

3. V ′(xa) < 0, and V ′(xs) > 0.

Items 2 and 3 imply that xa is an attracting steady state and xs is a repelling steady

state in the 1D deterministic dynamical system. We now assume that the optimal

path must satisfy lim
t→+∞

(x(t), p(t)) = (xs, 0), while lim
t→−∞

(x(t), p(t)) = (xa, 0). Since

H(x(t), p(t)) = 0, the limits provide direction along the optimal path.

The optimal path lies on the curve p = −2V (x), and p = 0 corresponds to the

zero fluctuation case. We shift the optimal path to the origin by using the following

transformation:

u = x, (3.2a)

w = p+ 2V (x), (3.2b)

Ĥ(u,w) =
w2

2
− wV (u). (3.2c)

The new equations of motion are now:

u̇ = ∂Ĥ/∂w = w − V (u), (3.3a)

ẇ = −∂Ĥ/∂u = wV ′(u). (3.3b)

The optimal path now corresponds to w = 0, and the zero fluctuation case,

p = 0, corresponds to w = 2V (u).

The linearized variation along the optimal path is given by the following matrix

initial value problem from equations (3.3a)-(3.3b):

Ẋ =



−V ′(u(t)) 1

0 V ′(u(t))


X, X(0) = I. (3.4)
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Equation (3.4) is hyperbolic as long as V ′(u(t) 6= 0 since the local eigenvalues

are given by ±V ′(u(t)). Therefore, there exists a time-dependent transformation

which recasts equation (3.4) into a diagonal system. Assuming the solution changes

slowly and the domain about the saddle structure is small, we illustrate our point

that the FTLE takes its maximum on the optimal path locally by considering the

following linear system:

Ẋ =



−α 0

0 α


X, X(0) = I, (3.5)

and for any initial value, the particular solution is xp(t;x0) = (x1(t), x2(t)) =

(e−αtx10, e
αtx20).

To show that the FTLE takes it maximum along the path, we notice that any

point along the path is hyperbolic with a saddle structure. Therefore, we consider

an arbitrary initial condition lying within a small domain containing the origin.

Since almost any initial condition hits the boundary of the domain in finite time

due to the saddle structure of the origin, we use the escape time as the final time

for the FTLE. The definition we use of the FTLE is the direct comparison of the

distance between two close trajectories as follows:

σ(t;x0) =
1
2t

log (||xp(t;x0 + ε)− xp(t;x0)||), (3.6)

where ε = (ε1, ε2).

Rescaling the domain to be D = [−1, 1] × [−1, 1], clearly any point not on the

invariant manifolds x1 = 0, and x2 = 0 will escape in the x2 direction. We assume

x0 = (x10, δ), where 0 < δ << 1. Then the time to escape for an arbitrary non-zero

initial condition is given by

tf = − log (δ)
α

, (3.7)
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and the FTLE using equation (3.6) yields

σ(t,x0) =
−α log (δ2ε21 + ε22/δ

2)
2 log δ

. (3.8)

For δ small and positive and t = tf , we also find that

∂σ(tf ;x0(δ))
∂δ

=
α log

(
ε22
)

2 (log (δ))2
δ

+O(δ3), (3.9)

which can be shown to be negative assuming ε2 < 1. A similar argument holds for

δ < 0. Therefore, the FTLE as a function of distance to the stable invariant manifold

is a decreasing function, and thus takes it maximum values on the manifold.

To complete the argument, we now demonstrate that a FTLE ridge of (local)

maximal values corresponds to the optimal path. We begin with the mild assump-

tion that the FTLE ridge connects the endemic state to the extinct state. The

endemic and extinct states are equilibria of the Hamiltonian, so that H = 0. In

addition, the FTLE ridge is invariant. Therefore, the ridge is a zero-energy orbit of

the Hamiltonian H, and thus determines the optimal path to extinction.

4. SIS epidemic model

In the Susceptible-Infectious-Susceptible (SIS) epidemic model, the population con-

sists of susceptible individuals and infectious individuals. The population is driven

via the birth rate µ, which is also equal to the death rate. The changes in incre-

ments are given by r = (r1, r2), where r1 and r2 can take the values of −1, 0, or

1. The transition rates W (X, r) for X = (s, i), where s and i are respectively the

total number of susceptible and infectious individuals, are given as: W
(
X; (1, 0)

)
=

Nµ, W
(
X; (−1, 0)

)
= µX1, W

(
X; (0,−1)

)
= µX2, W

(
X; (1,−1)

)
= γX2, and

W
(
X; (−1, 1)

)
= βX1X2/N , where β is the mass action contact rate, γ is the
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recovery rate, and N is a parameter for the average size of the population. The

transition rates give the probability of change in one iterate in time of the system.

For example, W (X, (1, 0) gives an increase in susceptible individuals due to births

at a rate Nµ, while W
(
X; (−1, 1)

)
generates an increase in infectious individuals

and a decrease in susceptible individuals due to an effective infectious contact.

For large N , random internal fluctuations of s and i are small on average. If these

fluctuations are disregarded, one arrives at the following well-known deterministic

mean-field equations for the SIS model:

Ẋ1 =Nµ− µX1 + γX2 − βX1X2/N, (4.1a)

Ẋ2 =− (µ+ γ)X2 + βX1X2/N. (4.1b)

For the reproductive rate of infection defined by parameter R0 = β/(µ + γ) > 1,

equations (4.1a)-(4.1b) have a solution XA = NxA with x1A = R−1
0 (susceptible),

and x2A = 1− R−1
0 (infectious), which describes the endemic disease. In addition,

equations (4.1a)-(4.1b) have a stationary state given by XS = NxS with x1S = 1,

and x2S = 0, which corresponds to the extinct, or disease-free state. Without

any fluctuations, extinction cannot occur since the epidemic state is stable and

the extinct state is unstable. The inclusion of noise will drive components of the

population to extinction. This is due to an effective mechanistic force p, which is

found by solving the equations of motion for the Hamiltonian.
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5. Derivation of scaling law for SIS model with internal

fluctuations

The Hamiltonian governing the probability density function (see Sec. 4(c) of the

main article) is given by

H(I, p) = (µ+ γ)I(e−p − 1) + βI(1− I)(ep − 1). (5.1)

For parameters in which the endemic and extinct states are close together, we

assume that both I and p are small, and that 0 < R0 − 1 = ε << 1, where

R0 = β/(µ+γ). We can therefore scale I and p by ε and consider a new Hamiltonian

in terms of the scaled variables. Expanding this new Hamiltonian in a Taylor series

about ε = 0 to third-order yields

H(εx, εy) = xy(µ+γ) (R0 − 1) ε2 +xy(µ+γ)
(
y

2
+
R0y

2
−R0x

)
ε3 +O(ε4). (5.2)

Hamilton’s equations are therefore given as

ẋ =(µ+ γ)x (R0 − 1−R0xε+ yε+R0yε) , (5.3a)

ẏ =− 1
2
y(µ+ γ) (2R0 − 2− 4R0xε+ yε+R0yε) . (5.3b)

The action as a function of R0 can then be found to be

S(R0) =

∞∫

−∞
y(t)ẋ(t)dt =

(R0 − 1)2

R0 (1 +R0)
. (5.4)
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