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Abstract We present information theoretic search strategies for single and multi-
robot teams to localize the source of a chemical spill in turbulent flows. In this work,
robots rely on sporadic and intermittent sensor readings to synthesize information
maximizing exploration strategies. Using the spatial distribution of the sensor read-
ings, robots construct a belief distribution for the source location. Motion strategies
are designed to maximize the change in entropy of this belief distribution. In ad-
dition, we show how a geophysical description of the environmental dynamics can
improve existing motion control strategies. This is especially true when process and
vehicle dynamics are intricately coupled with the environmental dynamics. We con-
clude with a summary of current efforts in robotic tracking of coherent structures in
geophysical flows. Since coherent structures enables the prediction and estimation
of the environmental dynamics, we discuss how this geophysical perspective can
result in improved control strategies for autonomous systems.

M. Ani Hsieh, Hadi Hajieghrary, and Dhanushka Kularatne
Scalable Autonomous Systems Lab, Drexel University, Philadelphia, PA 19104, USA e-mail:
{mhsieh1,hadi.hajieghrary,dnk32}@drexel.edu

Christoffer R. Heckman
Autonomous Robotics & Perception Group at the University of Colorado, Boulder, CO 80309 USA
e-mail: christoffer.heckman@colorado.edu

Eric Forgoston
Department of Mathematical Sciences, Montclair State University, Montclair, New Jersey 07043,
USA e-mail: eric.forgoston@montclair.edu

Ira B. Schwartz
Nonlinear Systems Dynamics Section, Plasma Physics Division, Code 6792, U.S. Naval Research
Laboratory, Washington, DC 20375, USA e-mail: ira.schwartz@nrl.navy.mil

Philip A. Yecko
Albert Nerken School of Engineering, The Cooper Union, New York, NY 10003, USA e-mail:
yecko@cooper.edu

1



2 Authors Suppressed Due to Excessive Length

1 Introduction

The motions of small vehicles are more significantly impacted by the environments
they operate in, allowing the environment to be leveraged to improve vehicle control
and autonomy, particularly for aerial and marine vehicles [16]. Consider the exam-
ple of a small autonomous marine vehicle (AMV) operating in the turbulent ocean.
The tightly coupled vehicle and environmental dynamics makes control challeng-
ing, but offers nearly limitless environmental forces to be exploited to extend the
power budgets of small, resource constrained vehicles.

Recent work in the marine robotics community has verified that AMV motion
planning and adaptive sampling strategies can be improved when accounting for
dynamics of the fluidic environment [13, 28, 27, 16, 17, 10]. Further progress is
hindered by the immense complexity of the atmospheric and/or the ocean dynam-
ics, which involves the interplay of rotation, stratification, complex topography and
variable thermal and atmospheric/oceanic forcing, not to mention thousands of bio-
logical, chemical, and physical inputs. Theoretical and experimental efforts to model
atmospheric and ocean flows have made progress with the help of simpler, so-called
“reduced” models, but these models are too idealized and limited in applicability for
use in the field. On the other hand, atmosphere and ocean hindcasts, nowcasts, and
forecasts provided by National Oceanic and Atmospheric Administration (NOAA)
and Naval Coastal Ocean Model (NCOM) [22] and regional ocean model systems
(ROMS) [28] include data assimilated from satellite and field observations. The
overall quality of these data is highly dependent on how well a given region of in-
terest is instrumented [25, 26], stymieing attempts to incorporate historical and/or
forecasted flows into vehicle motion planning and control strategies.

Fortunately, while geophysical flows are physically complex and naturally stochas-
tic, they also exhibit coherent structure. Fig. 1a and 1b1 show examples of coherent
structures that are easily discerned from the snapshots of atmospheric and ocean
surface currents. Knowledge of coherent structures enables prediction of flow prop-
erties, including transport, where they are known to play a key role. The Gulf Stream
is a prominent example of a mesoscale coherent jet whose heat transport is a critical
component of global weather and climate. In addition to large mesoscale eddies and
jets, smaller, sub-mesoscale, coherent features such as fronts, often grow from insta-
bilities of the larger scale motions [15]. These features impact both transport and the
ocean’s primary production, and thus storage, of organic matter. Using geophysical
fluid models, details from flows such as the Gulf Stream can be used to diagnose
the underlying geophysical fluid dynamics. This, in turn, enables the prediction of
various physical, chemical, and biological processes in general geophysical flows.
More importantly, predictions based on coherent structures may be exploited more
effectively than the detailed predictions offered by state-of-the-art numerical mod-
els. Coherent structures can thus provide a basis from which one can construct a
vastly reduced order description of the fluid environment.

1 For full animation visit http://earth.nullschool.net/ and http://svs.gsfc.
nasa.gov/vis/a000000/a003800/a003827/.
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The challenge of robotic control in a fluidic medium is closely tied to the dual
problems of mixing and optimal sensing. G.I. Taylor described and quantified how
even simple steady shear flows enhance the mixing of a contaminant in a fluid, a
process now known as Taylor dispersion [12]. In its simplest form, Taylor dispersion
is due to the creation of small scales which locally enhance contaminant gradients
and thus optimize diffusion. While achieving better mixing over long times, for
shorter time scales, the ability of flows to form structures may also inhibit mixing,
as when contaminant is trapped in a coherent vortex.

(a) (b)

Fig. 1: (a) Visualization of atmospheric currents for January 2015 using data provided by Global
Forecasting System, NCEP, National Weather Service, and NOAA. (b) Visualization of ocean sur-
face currents for June 2005 through December 2007 using NASA/JPLs Estimating the Circulation
and Climate of the Ocean, Phase II (ECCO2) ocean model.

In this work we examine autonomous sampling of a dispersive event in a geo-
physical flow. In particular, we consider the problem of finding the source of a
contaminant leak in a turbulent flow and discuss how search strategies can be sig-
nificantly improved from a GFD perspective. The GFD framework is based on a
specific class of coherent structures, called Lagrangian coherent structures (LCS).
LCS are similar to separatrices that divide a flow into dynamically distinct regions;
hyperbolic LCS can be understood as extensions of stable and unstable manifolds
to general time-dependent flows [6, 5, 4].

In our ongoing work we have tracked LCS using teams of autonomous robots in
geophysical fluidic environments, while Inanc et al. showed that time and fuel opti-
mal paths in the ocean can coincide with LCS boundaries [13, 23]. As such, knowl-
edge derived from geophysical fluid dynamics (GFD) can significantly improve the
overall quality of vehicle autonomy. For example, planning energy efficient tra-
jectories, maintaining sensors in their desired monitoring regions [17, 10, 7], and
enabling computationally tractable and efficient estimation and prediction of sur-
rounding environmental dynamics. We claim that LCS based flow knowledge can
be used to improve contaminant tracking strategies and support our claims using
geophysical fluid and dispersion models. We conclude with a discussion of major
challenges and opportunities ahead.
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2 Contaminant Source Localization in Turbulent Mediums

To illustrate these ideas, consider the problem of finding the source of a contami-
nant or hazardous waste plume in a turbulent medium. Turbulence poses significant
challenges for the localization and tracking of material dispersion sources since it
breaks up continuous patches of material into seemingly random moving discon-
nected components. As such, gradient-based search strategies based on chemical
concentrations become highly unreliable in turbulent mediums since the mixing dy-
namics renders any estimation of chemical gradients ineffective [21].

In this section, we formulate the source seeking/plume source localization prob-
lem as an information theoretic search strategy. The proposed strategy builds upon
[30] where the search strategy consists of making moves that maximize the change
in entropy of the posterior distribution of the source location. Similar to [8, 1], we
rely on a particle filter representation of the posterior belief distribution to make the
strategy more computationally viable in large complex spaces and distributable for
mobile sensing teams. The main contribution is extending existing state-of-the-art
information theoretic search strategies for robots operating in a turbulent flows.

Background and Assumptions We assume the mean rate of chemical detection at
position r resulting from a leakage at r0 follows a Poisson distribution given by:

R(r|r0) =
R

ln( λ
a )

e
(y0−y)V

2D K0

(
|r−r0|

λ

)
, (1)

where λ =
√

Dτ/(1+V 2τ/4D), R is the emission rate of the source, τ is the finite
lifetime of a chemical patch before its concentration falls out of the detectable range,
D is the isotropic effective diffusivity of the medium, V is the mean velocity of the
current, and K0(·) is the modified Bessel function of the second kind [30]. The
probability of registering the presence of a chemical patch by a sensor depends on
the distance and the angle of the sensor from the source, i.e., (r− r0).

In the search for the source, the set of chemical detection encounters along the
search trajectory carries the only available information about the relative location of
the source with respect to the robot. Using this information, a robot can construct
the probability distribution of the source location using Bayes’ rule P(r0|Tt) =
P(Tt |r0)P(r0)/

∫
P(Tt |r)P(r)dr. Here, Tt encapsulates the history of the uncorre-

lated material encounters along the robot’s search trajectory, with P(Tt |r0) denoting
the probability of experiencing such a history if the source of the dispersion is at r0.
We assume the probability of detecting a material or chemical plume at each step
is independent and use Poisson’s law to estimate the probability of detecting such a
history of the material presence along the search trajectory as:

P(Tt |r0) = exp
(
−
∫ t

0
R(r(t̄)|r0)dt̄

)
∏

i
R(r(ti)|r0), (2)

where r(t) is the search trajectory, and r(ti) is the position of each detection along
the trajectory [30]. We note that the assumption of the independence of detections
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holds since the location of the source is unknown. Furthermore, chemical plumes
quickly disintegrate into disconnected patches in turbulent mediums whose disper-
sion dynamics are highly nonlinear and stochastic. Rather than attempt to model the
complex process dynamics, we assume detection events are independent.

We note that (1) provides an observation model and there is no process model
beyond what we assume of the environmental dynamics and the propagation of the
source in the medium. As such, the current estimate of the belief distribution of the
source location, Pt(r), is used to determine the expected number of positive sensor
measurements at the new position, i.e., R(r(t)|r0). We assume robots move on a
grid within the workspace and at each time step can travel an upper bound of n
moves. The maximum number of moves on the grid is determined based on the
limitations and bounds on the control input and is based on the vehicle’s dynamics.
The workspace is assumed to be bounded but obstacle-free.

The objective is to localize the source of the dispersion in the workspace. Since
the rate of chemical encounter is dependent on the robot’s position with respect to
the source, the proposed strategy should result in robots maximizing the expected
rate of information acquisition on the source’s position.

The Single Robot Search Strategy The information gathered through the chemical
encounters shapes the probability distribution function that describes the possible
source locations, denoted by Pt(r). Thus, it makes sense to consider a search strategy
that drives the robot in a direction that promises the steepest decrease in the entropy
of this distribution. The expected rate of information gain at each search step is the
expected change in the entropy of the estimated field is given by:

E[∆St(r 7→ r j)] = Pt(r j)[−St ]+ [1−Pt(r j)][(1−ρ(r j))∆S0 +ρ(r j)∆S1], (3)

where, St =
∫

Pt(r) log(Pt(r))dr is the Shannon entropy of the estimated field. The
first term of (3) corresponds to the change in entropy upon finding the source at the
very next step. If the robot successfully localizes the source at the next step, then
the change in entropy would be zero and thus end the search.

Using the current belief distribution as the best estimate of the source location,
the expected number of positive sensor hits at location r is given by:

h(r) =
∫

Pt(r0)R(r|r0)dr0 (4)

and the probability of a single positive detection follows the Poisson law ρ(r) =
h(r)exp(−h(r)). Thus, the second term of (3) accounts for the case when the source
is not found at r j and computes the expected value of the information gain by the
robot moving to this new position. At each new location, we assume the robot takes
one measurement with its sensor resulting in two possibilities – the robot will have
either a positive sensor hit or not. To find the expected value of the change in the util-
ity function, i.e., the entropy, (3) calculates the change in entropy for each possible
move and each possible sensor outcome after the move.



6 Authors Suppressed Due to Excessive Length

The belief distribution for the source location Pt(r) is maintained over all pos-
sible source positions. At each step, the robot chooses to move in a direction that
enables it to acquire more information and decreases the uncertainty of the source
position estimate. Storing and representing the belief distribution becomes compu-
tationally challenging especially when the search space spans large physical scales
and/or contains complex geometry. This is especially true if robots rely on a fine grid
map to calculate the log-likelihood of the belief distribution. Furthermore, since the
search hypotheses are often spread across the workspace, closed form descriptions
for the belief distribution may not be accessible, especially in geometrically com-
plex spaces. Thus, we employ a particle filter approach to the representation of the
belief distribution with limited numbers of randomly drawn particles.

In this work, we assume each robot stores the estimated belief distribution of the
source location, Pt(r), using a manageable number of particles, {r̂i,ωi}, with r̂i rep-
resenting the hypothesis for the state (position) and ωi representing the correspond-
ing weight (probability) of hypothesis i. The probability mass function represented
by these set of particles is mathematically equivalent to the sum of the weighted
spatial impulse functions [2]:

P̂r(t)≈∑
i

ωiδ (r̂i− r), (5)

where r̂i is a hypothesis that survived the re-sampling procedure of the previous
step, and the weights, ωi, of the particles are modified as follows:

ωi(t) = ωi(t−1)e−
(

R(r(t)|r0)
)(

R(r(t)|r0)
)hit (6)

with hit = 1 in the case of a positive detection and hit = 0 otherwise. To calculate the
entropy of the particle representation of the belief distribution, we use the approach
presented in [8] where S≈−∑

N
k=1 w(i)

(t−1),k log
(
w(i)
(t−1),k

)
.

A robot’s control decision is determined by the expected change in entropy of
the source position estimate. At every time step, the expected information gain from
an observation at the next probable robot position is calculated. Since robots are
constrained to a maximum of n moves on the grid, they can quantify the expected
information gain on the source’s position as it moves. If no particles are within the
robot’s set of reachable points on the grid, then any position that is n moves away
from the robot’s current position can be chosen as the next step.

Two approaches are used to represent the information gathered during the search.
The first one assumes the robot has a limited field of view with no knowledge of the
search area. The particles are placed in the robot’s coordinate frame, and the control
decision is to move in the direction the robot expects to acquire more information.
Although the source location may not initially be within the robot’s field of view,
we assume its sensing range is large enough to provide a good enough measurement
for it to determine a direction to move in. The second approach assumes the robot
knows the boundary of the search area and can localize itself within the space. Under
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(a) (b)

Fig. 2: The particles representing the hypotheses for the source position. The background shows
the gas volume concentration in the water due to an oil spill. Blue denotes low concentration and
red denotes high concentration. Details of the plume simulation can be found in [3].

this scenario, the particles used to estimate the source positions are spread over the
entire workspace. Fig. 2 depicts the two representations.

It is important to note that we assume robots can measure the flow direction at its
current position. This is important for the robot to discern the direction the material
plumes are coming from. We note that the weight update given by (6) is differ-
ent from most particle filter implementations. This is because when localizing the
source of a dispersion, re-sampling serves the role of integrating past information
into the current estimate of the source position. Therefore, one must take the likeli-
hood of the detection history, (2), into account during the update and eliminate the
less probable hypotheses when re-sampling. This is the fundamental difference be-
tween the proposed strategy and existing information theoretic strategies for aerial
and ground vehicles operating in static environments. The single robot search strat-
egy is summarized in Algorithm 1.

The Multi-Robot Search Strategy To speed up the search strategy, we extend the
proposed single robot search strategy to a robot team. This effectively increases the
chances of positive encounters and decreases the expected time needed to localize
the source. To achieve this, we assume robots can communicate with one another
and thus the team can build a shared belief distribution of the source position. While
communications can be severely bandwidth limited in a fluidic medium, e.g., under-
water environments, the amount of data that must be communicated is low. Robots
are only required to exchange their position information when they have detected a
material plume at their current location. Since robots initialize with the same belief
distribution, each robot moves in a direction that reduces the entropy of this com-
mon belief distribution. Such a coordination strategy ensures every individual in the
team searches for a single source location. To take into account the impact of robot
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input : CURRENT estimate of source position belief distribution
output: UPDATED estimate of source position belief distribution

1 for All particles within the robot’s reachable set do
2 Update particle weights if the robot moves to the position of the particle, and;
3 (1) The robot detects a plume in the new position;
4 (2) The robot does not detect a plume in the new position;
5 Calculate entropy of the particle filter for (1) and (2);
6 Calculate expected reduction in entropy if robot moves to each particle position;
7 end
8 Move to the location of the particle with steepest expected reduction in entropy;
9 Obtain sensor reading and compute new particle weights for the samples;

10 Re-sample;
Algorithm 1: Single robot search strategy.

motion uncertainties on particle positions, we represent each particle position with
a Gaussian distribution and thus employ a Gaussian Mixture Model to represent the
probability distribution of the source given by (5). As such, we employ the steps
described in [11, 8, 1] to calculate the information utility function:

S≈−
∫

θ

{ N

∑
k=1

w(i)
(t−1),k p(θt |θt−1 = θ̂

(i)
(t−1),k) log

( N

∑
k=1

w(i)
(t−1),k p(θt |θt−1 = θ̂

(i)
(t−1),k)

)}
,

where p(θt |θt−1 = θ̂
(i)
(t−1),k) is the probability distribution over the possible position

of the ith particle with respect to the agent after it moves and is a Gaussian.
Simulation results validating the proposed search strategy for a team of three

robots are shown Fig. 3. For a video of the simulation, we refer the reader to
https://youtu.be/5maQPeEcyf8. The robots are shown localizing the source
of a 2D multi-scale simulation of the Deepwater Horizon oil spill [3]. The entropy
of the belief distribution for the source position at every time step is shown in Fig.
4a. We note that the temporary increase in entropy at 60th time step corresponds to
one of the robots loosing track of the plume.

3 Lagrangian Coherent Structures

While the proposed information theoretic search strategy described in the previous
section is able to find and localize the source of a spill in a turbulent medium, the
strategy can be significantly improved with GFD knowledge of the environmen-
tal dynamics. Coherent structures exhibited in GFD flows provide reduced-order
description of the complex fluid environment and enable the estimation of the un-
derlying geophysical fluid dynamics. In particular, Lagrangian coherent structures
are important since they quantify transport and control the stretching and folding
that underpins kinematic mixing.

Lagrangian coherent structures are material lines that organize fluid-flow trans-
port and as mentioned may be viewed as the extensions of stable and unstable
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(a) (b) (c) (d)

Fig. 3: A team of three robots executing the proposed collaborative search strategy to localize the
source of an oil spill. The background shows the gas volume concentration in the water due to
the spill. The robots are denoted by black ∗. The red, magenta, and black dots denote the robot
trajectories. For more details on the plume simulation, we refer the interested reader to [3].

(a) (b)

Fig. 4: (a) The particles representing the hypotheses over the position of the source. (b) Single
agent search using Algorithm 1 in a gyre flow. The background shows the FTLE field of the fluidic
environment with LCS boundaries denoted in red. The source of the spill is denoted by the yellow
∗ and the black dots denote contaminants emanating from the yellow ∗. The red ∗ denotes the
robot’s current position, the red dots denote the robot’s search trajectory. The cyan circles denote
portions of the robot’s trajectory where it detected the contaminants.

manifolds to general time-dependent systems [6]. In two-dimensional (2D) flows,
LCS are one-dimensional separating boundaries analogous to ridges defined by lo-
cal maximum instability, and can be quantified by local measures of Finite-Time
Lyapunov Exponents (FTLE) [24, 5]. In this section, we briefly explain the com-
putation of FTLE fields and the identification of LCS boundaries via local FTLE
measures. We limit our discussions to 2D planar flows, however all concepts dis-
cussed in this section are readily extended to higher dimensions.
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Consider a 2D flow field given by

ẋ(t) = F(x, t) (7)

where x = [x,y]∗ gives the position in the plane and ∗ denotes the transpose of the
vector. Such a continuous time dynamical system has quantities, known as Lya-
punov exponents, which are associated with the trajectory of the system in an infi-
nite time limit. The Lyapunov exponents measure the growth rates of the linearized
dynamics about the trajectory. To find the FTLE, one computes the Lyapunov ex-
ponents on a restricted finite time interval. For each initial condition, the exponents
provide a measure of its sensitivity to small perturbations. Therefore, the FTLE is
a measure of the local sensitivity to initial data. The position of a fluid particle ad-
vected by the flow field given by (7), is a function of time t, the starting point of the
particle x0 and starting time t0, i.e., x = x(t;x0, t0). Using the notation by Shadden
et al. [24], the solution to the dynamical system given in (7) can be viewed as a
flow map which takes points from their initial position x0 at time t0 to their posi-
tion at time t. This map, denoted by φ t

t0 , satisfies φ t
t0(x0) = x(t;x0, t0), and has the

properties: φ
t0
t0 (x) = x and φ

s+t
t0 (x) = φ s+t

s (φ s
t0(x)).

The FTLE with a finite integration time interval T , associated with a point x at
time t0 is given by,

σ
T
t0 (x) =

1
|T |

ln
√

λmax (∆) (8)

where λmax (∆) is the maximum eigenvalue of the finite-time version of the Cauchy-
Green deformation tensor ∆ , given by,

∆ =
dφ

t0+T
t0 (x)
dx

∗
dφ

t0+T
t0 (x)
dx

. (9)

The value of ∆ is computed numerically by discretizing the domain into a regular
grid and computing the trajectories of each point and its immediate neighbors in the
grid from time t0 to t0 +T . For each point in the grid, the trajectories are computed
by numerically integrating (7) from t0 to t0 +T . The FTLE value gives a measure
of the maximum expansion of two initially nearby particles when they are advected
by the flow. Therefore, particles initiated on opposite sides of an LCS will have
much higher FTLE values than their neighbors since LCS are essentially boundaries
between two dynamically distinct regions in the flow.

By calculating the FTLE values for the entire flow field, it is possible to identify
the LCS boundaries by tracing out regions with the highest FTLE values. As such,
LCS are equivalent to ridges in the FTLE field with maximal FTLE values as defined
by Shadden et al. [24]. The forward-time FTLE field calculated by advecting fluid
particles forward in time (T > 0), reveals repelling LCS which are analogous to the
stable manifolds of saddle points in a time independent flow field. Conversely, the
backward-time FTLE field (T < 0) reveals attracting LCS which are analogous to
unstable manifolds of a time independent flow field.
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While one can easily extend the source seeking strategies described in Section
2 to single gyre-like flows as shown in Fig. 4b, knowing the LCS boundaries can
significantly improve search strategies when operating in complex environments
like those shown in Fig. 1a and 1b. Fig. 5 shows a simulation of the dispersion
of particulates in a time-varying wind-driven double-gyre flow [31] with the FTLE
field shown in the background. The LCS boundaries are denoted by red and the
center vertical boundary oscillates about x = 1. From the simulations, we note that:
1) LCS boundaries behave as basin boundaries and thus fluid from opposing sides
of the boundary do not mix; 2) in the presence of noise2, particulates can cross the
LCS boundaries and thus LCS denotes regions in the flow field where more escape
events occur [4]; and 3) knowledge of LCS locations can improve the existing search
strategy since this is akin to having a map of the workspace.

(a) (b)

(c) (d)

Fig. 5: Simulation of a spill in a time-varying wind-driven double-gyre flow. The background
denotes the FTLE field for flow and the red x denotes the source position of the spill. The black
particles denotes particulates emanating from the source.

However, one downside to finding attracting and repelling LCS by computing
the FTLE fields is due to the fact that one needs global velocity field information
for the region of interest. It is often the case when operating in the ocean that this
information is sparse. Therefore, it would be useful to find the LCS in an alternate

2 Noise can arise from uncertainty in model parameters and/or measurement noise.
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way. To this end, we have developed a novel method that allows for collaborative
robotic tracking of LCS. In particular, the robots perform the tracking based on
local velocity measurements, thus ameliorating the need for global information. This
collaborative LCS tracking is described in the following section.

4 Collaborative LCS Tracking

The tracking of coherent structures in fluids is challenging since they are global
structures that are generally unstable and time-dependent. We briefly describe ex-
isting and on-going work in developing collaborative strategies for teams of robots
to track the stable and unstable manifolds and LCS boundaries in 2D flows. It is
important to note that tracking repelling LCS is achieved without relying on explicit
computations of FTLE values. In fact, the identification of repelling LCS bound-
aries requires the computation of forward FTLEs, making real-time FTLE-based
tracking of LCS boundaries extremely challenging. In contrast to this, tracking at-
tracting LCS can be performed using backward FTLE fields calculated using the
local velocity data acquired by the robots.

Repelling LCS and Stable Manifolds The tracking of repelling LCS boundaries or
stable manifolds in flows relies on robots maintaining a boundary straddling forma-
tion while collecting local measurements of the flow field. Since LCS correspond to
regions in the flow field with extremal velocities, LCS tracking is achieved by fus-
ing data obtained on opposite sides of the boundary to identify the location of the
extremal velocity. The strategy was first proposed for a team of three robots where
the center robot is responsible for locating the boundary using the flow measure-
ments provided by the team. The remaining robots would then maintain a saddle
straddling formation, i.e., remain on opposite sides of the boundary, at all times.
The strategy has been extensively validated using analytical models, experimental
data, and actual ocean data [9, 19, 18] and extended for larger team sizes [20].

It is important to note that these strategies achieve tracking of global fluidic fea-
tures, i.e., the LCS, using only local measurements of the flow field and an initial
estimate of the location of the repelling LCS.

Attracting LCS and Unstable Manifolds Different from repelling LCS, attract-
ing LCS are quantified by maximal backward FTLE measures. As such, collabora-
tive tracking of attracting LCS or unstable manifolds can be achieved through on-
board calculation of local FLTE fields using previously acquired flow velocity data.
In this case, the tracking strategy utilizes the FTLE field along with instantaneous
local flow field measurements to resolve the attracting LCS boundary. Similar to
tracking repelling LCS, agent-level control policies leveraging underlying flow dy-
namics were developed to maintain the formation of the team as they track the at-
tracting boundary. The formation control strategy ensures vehicles do not collide
with one another while maintaining the necessary boundary straddling formation.

The attracting LCS tracking strategy was also validated using a combination of
analytical models and experimental flow tanks using micro autonomous surface ve-
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(a) t=9.3s (b) t=20.4s (c) t=31.6s

(d)

Fig. 6: (a)-(c) Actual ASV tracking experiment. (d) ASVs trajectories for the experiment in (a)-(c).
The red line is the actual boundary and the blue line is the trajectory of the center vehicle.

hicles (ASVs) [14]. Fig. 6 shows an experiment using three real and four virtual
ASVs to track a simulated static flow field. The three ASVs were initially arranged
in a saddle straddling formation with the center ASV tasked with tracking the bound-
ary. The virtual agents were placed at the four corners of the grid.

Collaborative tracking of coherent structures allows one to gain knowledge of
the geophysical flow of interest. This knowledge can be used to improve or opti-
mize a variety of sensing and control objectives. For example, in previous work we
have demonstrated how GFD-based knowledge allows for an increase in loitering
time of vehicles operating in the ocean [4, 17, 10, 7]. Another example involves the
localization of a contaminant source as described previously.

5 Conclusions and Future Outlook

In this work, we showed how GFD-derived knowledge can significantly improve
the autonomy of the vehicles that operate within them. Coherent structures have the
potential to provide computationally efficient forecasts of current and wind patterns
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since they enable a much lower order description of the environmental dynamics.
The ability to better quantify transport behaviors in natural fluid environments will
enable the synthesis of energy-efficient motion planning and control strategies, the
detection and tracking of contaminant and hazardous waste dispersions, and more
effective allocation of mobile sensing resources for search and rescue operations.
This makes intuitive sense since this is akin to planning and motion control of au-
tonomous vehicles using a suitable map of the environment.

Different from traditional maps, most features of interest in flows are unstable
and non-stationary. While this renders the problem of leveraging dynamic transport
controlling structures for improved underwater vehicle autonomy highly challeng-
ing, it also opens up new opportunities in planning, control, and perception in these
highly dynamic and uncertain environments. Some specific directions for future in-
vestigations include how do we construct, maintain, and update such a fluidic map?
Since LCS boundaries exist at various length scales and are often seasonal, how
does a vehicle leverage the structures for energy efficient monitoring and naviga-
tion? Is it possible to use LCS information to identify unsafe regions in the fluidic
environment where vehicles may be trapped by the environmental dynamics? Can
we manipulate the fluid for fluid-mediated underwater manipulation of objects?

Beyond these challenging problems is the extension of all the previously dis-
cussed tracking, planning, control, search, etc. problems to the fully 3D environ-
ment. One major challenge associated with autonomous vehicles operating at depth
are the issues involved with communication. It is known that communication time
delay can destabilize formations of vehicle groups [29]. But one also must consider
communication drop-outs and even the complete loss of communication especially
when operating in the ocean. Overcoming the difficulties of operating in a 3D envi-
ronment will allow for greatly improved environmental monitoring and forecasting.

In this work, we presented information theoretic search strategies for localiz-
ing contaminant sources in turbulent flows. We also presented on-going work in
distributed sensing of geophysical fluid dynamics. Much of this work has been mo-
tivated by the insight that the environment may be effectively exploited for vehicle
control and autonomy especially when the vehicle and environmental dynamics are
tightly coupled. By looking at the changing environment through a geophysical per-
spective, there are significant GFD features that can be leveraged for predicting and
estimating the environmental dynamics. The challenge lies in overcoming the the-
oretical and technological challenges needed to robustly and autonomously collect,
process, and interpret data about the geophysical flows.
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