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ABSTRACT
In this paper, we describe the development of an experimen-

tal testbed capable of producing controllable ocean-like flows
in a laboratory setting. The objective is to develop a testbed
to evaluate multi-robot strategies for tracking manifolds and La-
grangian coherent structures (LCS) in the ocean. Recent theoret-
ical results have shown that LCS coincide with minimum energy
and minimum time optimal paths for autonomous vehicles in the
ocean. Furthermore, knowledge of these structures enables the
prediction and estimation of the underlying fluid dynamics. The
testbed is a scaled flow tank capable of generating complex and
controlled quasi-2D flow fields that exhibit wind-driven double-
gyre flows. Particle image velocimetry (PIV) is used to extract
the 2D surface velocities and the data is then processed to verify
the existence of manifolds and Lagrangian coherent structures in
the flow. The velocity data is then used to evaluate our previously
proposed multi-robot LCS tracking strategy in simulation.

INTRODUCTION
Recent years have seen the use of autonomous underwater

and surface vehicles (AUVs and ASVs) for persistent surveil-
lance of the ocean to study the dynamics of various biological
and physical phenomena, such as plankton assemblages [1], tem-
perature and salinity profiles [2–4], and the onset of harmful al-
gae blooms [5–7]. These studies have mostly focused on the
deployment of single, or small numbers of, AUVs working in
conjunction with a few stationary sensors and ASVs. While data
collection strategies in these works are driven by the dynamics
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of the processes they study, few existing approaches explicitly
account for the surrounding fluid dynamics [8, 9]. In fact, most
existing works treat the effect of the surrounding fluid as exter-
nal disturbances [7, 10], largely because of our limited under-
standing of the complexities of ocean dynamics. This is fur-
ther exacerbated since existing data sets that describe oceanic
flows are often finite-time and of low resolution, which limits
our ability to estimate and predict their dynamics. Recently, new
tools have been developed in order to study ocean transport. One
of these involves determining the location of coherent structures
and studying how these structures control transport.

To this end, we are interested in developing collaborative
control strategies for AUVs and ASVs to track the manifolds
and coherent structures on flows [11]. In realistic ocean flows,
these time-dependent coherent structures, or Lagrangian coher-
ent structures (LCS), are analogous to separatrices that divide the
flow into dynamically distinct regions. LCS are extensions of
stable and unstable manifolds to general time-dependent flows
[12], and they carry global information about the dynamics of
the flows. For two-dimensional (2D) flows, LCS are analo-
gous to ridges defined by local maximum instability, and are
quantified by local measures of finite-time Lyapunov exponents
(FTLE) [13]. Recently, LCS have been shown to coincide with
optimal trajectories in the ocean which minimize the energy and
the time needed to traverse from one point to another [14, 15].
Since LCS denote boundaries in the flow field between dynam-
ically distinct regions, knowledge of the LCS locations can also
aid the estimation and prediction of the fluid dynamics to im-
prove AUV and ASV navigation strategies. Furthermore, given
that LCS are inherently unstable and denote regions of the flow
where more escape events may occur [16], knowing LCS loca-



tions will aid in maintaining sensors in desired monitoring re-
gions.

Motivated by these recent developments, we previously pro-
posed a collaborative robotic control strategy for tracking sta-
ble and unstable manifolds in 2D flows [11]. The technique re-
lies on robots performing local measurements of the flow field
and fusing this information to collaboratively track these bound-
aries. The collaborative control strategy was implemented using
a team of three robots to track manifolds and coherent structures
in static flows as well as a time-dependent model of a wind-
driven double-gyre often seen in the ocean. A significant chal-
lenge in working with AUVs and ASVs for ocean monitoring
applications is that field experiments are logistically difficult and
costly to conduct. While validation of the robotic strategies using
ocean data provided by the Naval Coastal Ocean Model (NCOM)
database is a viable alternative, these data sets often have low
spatio-temporal resolution. Furthermore, ocean surface current
measurements in these models are often kilometers apart, lim-
iting the usefulness of simulation results for understanding the
challenges of controlling and coordinating AUVs/ASVs that are
at most a few meters in size.

In this work, we describe the development of an experimen-
tal testbed capable of producing controllable ocean-like flows in
a laboratory setting. The objective is to develop an experimental
system that can produce high resolution and realistic quasi-2D
flow fields that can be used to evaluate the performance of exist-
ing multi-robot manifold and coherent structure tracking strate-
gies. The experimental testbed consists of a 60 cm square tank
capable of generating complex and controlled flow fields that ex-
hibit wind-driven double-gyre flow solutions. Complementing
this testbed tank, we have also designed a smaller low Reynolds
number apparatus (8 cm square) in which multiple gyre and jet
flows can be generated, controlled, and sampled with a high de-
gree of precision. Particle image velocimetry (PIV) is used to
extract the 2D surface velocity fields and the data is then pro-
cessed. We compare the experimental surface flow data with the
comparable 2D analytical wind-driven double gyre model and
identify and verify the existence of manifolds and coherent struc-
tures in the flow. We then use the actual flow field data to evalu-
ate the feasibility of the collaborative tracking strategy described
in [11].

The paper is structured as follows: Section 1 describes the
multi-robot tracking strategy and its motivation. The develop-
ment of the experimental low Reynolds number tank and the
testbed tank is presented in Sec. 2, while the testbed validation
can be found in Sec. 3. The computation of the FTLE is pre-
sented in Sec. 4, and Sec. 5 presents our multi-robot tracking
simulation results. Lastly, future work is contained in Sec. 6.

1 MULTI-ROBOT TRACKING OF MANIFOLDS AND
LCS
Ocean dynamics is of great industrial, military, and scientific

interest, and the problem of predicting physical quantities or flow
features is a critical one. AUVs and ASVs have filled an impor-

tant gap by allowing direct and continuous monitoring, but mon-
itoring networks are sparse, and a placement strategy is needed
to optimize the impact of collected data. Such strategies cannot
be formulated a priori due to the complexity of typical ocean
circulation patterns, which are intrinsically time-dependent and
three dimensional. Instead, autonomous vehicles must be able to
extract important flow features and adaptively form a placement
strategy that is optimal in terms of both information input and
energy expenditure. To achieve this goal, individual robots must
track flow and transport features that can be identified from mea-
surements and understood using dynamical systems and fluid dy-
namical models.

Even within simplified models of oceanographic flows,
however, features that control transport, including jets and gyres,
are inherently complicated and unsteady. We therefore adopt a
perturbative approach to the characterization of flow and trans-
port features by, for example, examining the effect of periodi-
cally or stochastically forced multiple gyre flows.

The purpose of our experimental testbed is to enable the val-
idation of existing and future collaborative robotic control strate-
gies for tracking material lines that separate regions of flow with
distinct fluid dynamics. We briefly summarize our existing track-
ing strategy for the sake of completeness and refer the interested
reader to [11] for further details.

As mentioned previously, the problem of tracking manifolds
and coherent structures in complex flows is similar to tracking
stable (and unstable) manifolds of a general nonlinear dynamical
system where the manifolds separate regions in phase space with
distinct dynamical behaviors. Our existing collaborative control
strategy was developed assuming 2D conservative planar flows
where the material lines correspond to the stable and unstable
manifolds. The tracking strategy was inspired by the Proper
Interior Maximum (PIM) Triple Procedure [17] – a numerical
technique designed to find stationary trajectories in chaotic re-
gions with no attractors. The strategy assumes a team of three
robots whose objective is to maintain a saddle straddling forma-
tion across the manifold/boundary of interest. By maintaining a
saddle straddling formation and leveraging the flow field dynam-
ics, the team iteratively traces out the location of the ridge in the
flow.

Given a team of three robots, we identify them as robots
{L,C,R}. To successfully track the manifold of interest, denoted
by BS, robot C must remain close to BS using only local mea-
surements of the velocity field provided by the rest of the team.
As such, robot C is the tracking robot while robots L and R are
tasked to maintain the straddle formation across the BS at all
times. We assume the following 2D kinematic model for each of
the AUVs:

ẋi =Vi cosθi +ui, (1a)

ẏi =Vi sinθi + vi, (1b)

where xi = (xi, yi)
T denotes the vehicle’s position in the

plane, Vi and θi denote respectively the vehicle’s speed and
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Figure 1. THREE ROBOTS TRACKING BS IN A GIVEN CONSERVA-
TIVE VECTOR FIELD. THE BLUE DASH-DOT LINES REPRESENT THE
INDIVIDUAL ROBOT TRAJECTORIES, THE GREEN DASHED LINE
REPRESENTS THE SADDLE STRADDLE LINE SEGMENT J, AND PL
AND PR DENOTE THE TARGET POSITIONS FOR ROBOTS L AND R,
RESPECTIVELY, WHEN EXECUTING UA.

heading, and ui = (ui, vi)
T denotes the fluid velocity experi-

enced/measured by the ith vehicle. Here Vi and θi are the control
inputs for each vehicle.

The controller for the straddling robots consists of two dis-
crete states: a passive control state, UP, and an active control
state, UA. The robots initialize in the passive state UP where the
objective is to follow the flow of the ambient vector field. There-
fore, Vi = 0 for i = L,R. Robots execute UP until they reach a
maximum allowable separation distance from the tracking robot
C. When robots L and R are too far from robot C, they switch to
the active control state, UA, where the objective is to navigate to
a point on the next saddle straddle line segment. A sketch of the
collaborative control strategy is shown in Fig. 1.

As the robots maintain the formation, they constantly sam-
ple the velocity of the surrounding flow field and communicate
these measurements and their relative positions to robot C. The
tracking robot C uses the velocity measurements provided by
robots L and R to interpolate the vector field along a collection of
points located on the saddle straddling line segment, denoted by
J in Fig. 1, given by robots L and R’s position. Then robot C’s
estimate of the manifold is given by the point on J with either the
maximum or minimum velocity depending on whether the team
is tracking the unstable or stable manifold. In this work, we as-
sume full communication capability among the robots. In other
words, we assume that each robot can know the positions of the
other robots in relation to itself and that robot C can communi-
cate information about the projected saddle straddle line segment
to robots L and R. By employing this technique iteratively, the
team can estimate and track the location of the manifold.

It is important to note that Lagrangian coherent structures
are time-dependent extensions of the stable and unstable mani-
folds of time-independent systems. In 2D flows, LCS are essen-
tially the ridges/boundaries defined by local maximum instabil-
ity, and quantified by local measures of Finite-Time Lyapunov
Exponents (FTLE) [13]. To validate and evaluate existing and
future collaborative robotic control strategies for tracking mani-

Figure 2. VECTOR FIELD OF THE MODEL GIVEN BY (2) FOR TWO
GYRES WITH A = 10, µ = 0.005, ε = 0, ψ = 0, I = 0.01, AND
S = 50.

folds and coherent structures in complex flows that meet the var-
ious requirements described previously, we have designed an ex-
perimental testbed.

2 EXPERIMENTAL TESTBED
In this section, we describe the development of our exper-

imental flow tank built to generate controllable flow fields that
exhibit the transport-controlling features relevant to robot place-
ment. Since realistic quasi-geostrophic ocean models exhibit
double-gyre flow solutions, our objective is to develop a labo-
ratory testbed capable of generating flows that can be described
by the wind-driven double-gyre flow model given by:

ẋ =−πAsin(π
f (x, t)

s
)cos(π

y
s
)−µx+η1(t), (2a)

ẏ = πAcos(π
f (x, t)

s
)sin(π

y
s
)

d f
dx
−µy+η2(t), (2b)

ż = 0, (2c)

f (x, t) = εsin(ωt +ψ)x2 +(1−2εsin(ωt +ψ))x. (2d)

When ε = 0, the multi-gyre flow is time-independent, while for
ε 6= 0, the gyres undergo a periodic expansion and contraction
in the x direction. In (2), A approximately determines the am-
plitude of the velocity vectors, ω/2π gives the oscillation fre-
quency, ε determines the amplitude of the left-right motion of
the separatrix between the gyres, ψ is the phase, µ determines
the dissipation, s scales the dimensions of the workspace, and
ηi(t) describes a stochastic white noise with mean zero and stan-
dard deviation σ =

√
2I, for noise intensity I. Fig. 2 shows the

vector field of a two-gyre model.

2.1 Low Reynolds number tank
In order to impose precisely formed perturbations onto con-

trolled and realistic flows, we have designed laboratory exper-
iments in the low Reynolds number regime. An 8 cm square
transparent tank is filled to a depth d = 2 cm with a glycerol-
water mix and driven by a 4 x 4 lattice of submerged disks
mounted to an array of shafts linked by gears. The apparatus
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is designed so that the two adjacent 4 x 2 sets of disks have sep-
arate stepper motors, controllers and gears, such that they may
be independently driven at any time-dependent angular veloc-
ity function from a simple MATLAB code. High quality PIV
is obtained using laser light sheet illuminated 50 µm diameter
tracer particles and a high speed video camera, as seen in Fig. 3.
Because the Reynolds numbers in these experiments are in the
range Re ∼ O(10)− Re ∼ O(1000), the flow is not a realis-
tic model of ocean gyres. Nevertheless, these laboratory flows
have a number of features in common with actual oceanographic
flows as well as double-gyre model flows: both are quasi-two-
dimensional and the gyre centers are free to wander under per-
turbation (Fig. 3(c)). Within this framework, we have applied
a range of perturbative forcing functions in which the disk lat-
tice is driven using time-varying and stochastic rotational veloc-
ities. We readily observe that time-dependent perturbations lead
to transport across the gyre boundaries (Fig.3(a)-3(b)), as first
noted by Aref [18], and break the time reversibility of the flow,
as discussed recently by Eckhardt and Hascoët [19].

These low Reynolds number experiments provide a valu-
able template for the design of flows and control strategies in the
testbed tank, described next in Sec. 2.2. First, the low Re flows
are strongly 2D: a single tracer remains within the 0.6 mm thick
laser sheet for 20 or more orbits. Moreover, the flowfield may be
captured at any depth, allowing us to quantify the role of weak
three-dimensionality. Because of its small size, ideal PIV condi-
tions are maintained and, as needed, particle tracking velocime-
try (PTV) may be simultaneously performed on a small number
of larger particles that emulate AUVs/ASVs. Finally, the oper-
ating regime of the low Reynolds number tank may be extended
using glycerine-water mixtures to O(103) or more, overlapping
the regime of the testbed tank.

2.2 Testbed Tank
While the low Reynolds number tank is useful in precisely

measuring flow-dependent transport features, it is of limited use
when considering the interaction of AUVs and ASVs with trans-
port. To create a more realistic experimental platform where
multiple robots may track features in complex time-dependent
flows in which they are immersed, we require a larger flow field
in which more unsteady, higher Reynolds number flows can be
generated, still with some degree of control over perturbations.
At Reynolds numbers in the range Re > O(104), sheared flows
such as multiple gyres will exhibit strongly nonlinear response
to driving and display complex, time-dependent flow patterns.
Nevertheless, we must be able to control the coarse features of
the flows, such as the mean sizes and locations of the gyres and
their boundaries – in other words, the transport controlling fea-
tures. Ultimately, our laboratory experiment must also accom-
modate the deployment of a small network of robots within the
flow. The dominant flow features must therefore remain large
enough in scale that the trajectory of a robot within the flow is
approximately that of a tracer.

To achieve this, we built a 60× 60× 30 cm3 acrylic flow

(a) (b)

(c)

Figure 3. PIV FLOWFIELDS (A-B) SHOWING CONTROLLED SHIFT
OF CENTRAL SEPARATRIX DUE TO TEMPORAL VARIABILITY IN THE
RELATIVE VELOCITIES OF THE LEFT AND RIGHT GYRE PAIRS; (C)
A 30-70 VOLUME MIX OF GLYCEROL-WATER SHOWING THE UN-
STEADY GYRES AT RE≈ 1000.

(a) (b)

Figure 4. (A) FLOW TANK CYLINDRICAL POSTS ATTACHED TO MO-
TOR. (B) 60×60×30 CM3 EXPERIMENTAL FLOW TANK.

tank. The flow field is generated using 12 DC geared motors
each mounted to an acrylic cylinder that is approximately 6 cm
in diameter and 14 cm in height (see Fig. 4(a)). The motors are
equipped with magnetic encoders to enable closed-loop control
of the motor speeds. Each motorized cylinder is then mounted
perpendicular to the bottom of the tank via suction cups and sta-
bilizing plastic bases as shown in Fig. 4(b).

To generate the flow field, the tank was filled with water to
a depth of 14 cm. The dynamics of the flow field can be changed
by setting the speed and direction of the motorized cylinders. A
time-independent flow field was created by placing the 12 motor-
ized cylinders on a 4×3 grid. The grid of cylinders were set to
rotate at the same constant speed but each in an opposing direc-
tion. In other words, each motor rotated in a direction opposite
to the ones adjacent to it on the grid. Time-varying flow fields
can be generated by periodically changing the direction and the
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(a)

(b)

Figure 5. (A) EXPERIMENTAL SETUP OF FLOW TANK WITH 12
DRIVEN CYLINDERS. (B) FLOW FIELD FOR IMAGE (A) OBTAINED VIA
PARTICLE IMAGE VELOCIMETRY (PIV).

speed of specific cylinders in the grid. In this work, we focus on
creating time-independent flow fields.

Particle image velocimetry (PIV) is used to track the sur-
face flow field [20]. In our testbed, we employ a color camera
and circular paper markers 0.3 cm in diameter. The raw im-
ages were then processed using the open-source MATLAB PIV
Toolbox [21] to extract the surface velocities of the fluid. A
sample frame of the experimental setup is shown in Fig. 5(a)
and the extracted velocity field is shown in Fig. 5(b). In recent
tests, we have supplanted the paper markers with water-resistant
polypropylene spheres, which are more homogeneous and are
less prone to clumping behavior. We are also experimenting with
a surfactant to reduce surface tension, which will reduce particle
clumping.

3 TESTBED VALIDATION
The analytical basis for our tank is the static wind-driven

double-gyre model given by (2). To achieve a similar 2D flow
pattern, the motors are placed at fixed positions in the tank. We
used two methods to compare the experimental data with the an-
alytical double-gyre model. First, Fourier analysis tools were
used in order to identify the dominant frequencies in the flow
field for both the analytical model and the experimental data. We
then used a Dynamic Mode Decomposition (DMD) to compare
the dominant dynamic modes of the model and the experimental
data.

(a) Wind-Driven
Double-Gyre

(b) Mean Data (c) Snapshot of Data

Figure 6. FAST FOURIER TRANSFORM OF VELOCITY MAGNI-
TUDES OF A) THE WIND-DRIVEN DOUBLE-GYRE MODEL, B) THE
MEAN OF THE EXPERIMENTAL DATA AND C) A SINGLE TIME
FRAME OF THE EXPERIMENTAL DATA. THESE IMAGES HAVE BEEN
SHIFTED SUCH THAT THE ZERO FREQUENCY LOCATIONS ARE AT
THE CENTER OF THE IMAGE.

3.1 Fourier Analysis
Figure 6 presents the Fast Fourier Transforms (FFT) of

velocity magnitudes for both the double-gyre model and ex-
perimental data. The figure shows that the experimental data
(Figs. 6(b) and 6(c)) and the analytical model (Fig. 6(a)) exhibit
similar frequency components, despite the high levels of noise
present in the experimental data. Noise in the experimental data
can be seen by comparing Fig. 6(b), which represents a time av-
erage of the experimental data, with Fig. 6(c), which is an unfil-
tered snapshot of the data.

The off-axis vertical lines are symmetric about the x-axis
and represent the frequency (and corresponding harmonics) at
which the flow changes direction in the y-direction. Similarly,
the off-axis horizontal lines are symmetric about the y-axis and
represent the frequency (and corresponding harmonics) across
the x-direction. It should be noted that the horizontal lines are
farther from the origin than the vertical ones. This tells us that
the flow changes direction faster in the y-direction. This effect
is associated with the fact that the motors are arranged in a 4×3
grid with columns of 4 motors placed along the y-direction.

3.2 Dynamic Mode Decomposition
In addition to the FFT analysis, we compared the experi-

mental data with the analytical model using the Dynamic Mode
Decomposition (DMD) technique [22, 23]. In general, the DMD
approach described in [22] yields a total of k−1 dynamic modes
where k denotes the total number of measurements, or frames,
obtained at each sampling period. While the approach enables
accurate reconstruction of the original flow field, it does not eas-
ily distinguish between dominant and non-dominant dynamic
modes, i.e. dominant flow dynamics and noise. Therefore, we
employ the optimized DMD technique presented in [23].

The main advantage of the optimized DMD approach is that
it also allows the user to select the number of dominant modes
used to provide a reduced order representation the flow field.
Since it is difficult to determine the minimum number of modes
for a given experimental data set, we performed the decompo-
sition assuming varying numbers of modes and compared the
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Figure 7. OVERLAYED VECTOR FIELDS FROM THE DOMINANT
MODE OF THE DOUBLE-GYRE MODEL AND THE EXPERIMENTAL
DATA. GREEN CIRCLES DENOTE THE LOCATIONS OF THE MOTORS.

error, percentage of energy captured in the dominant modes, and
the total number of iterations. We found that after 2-6 iterations,
the residuals in the weights associated with the principal modes
converge to a minimum value. Using 2 principal modes required
more iterations to converge, while using 5 or more principal
modes resulted in a very fast convergence with the lowest error.
Since the solutions for 2-6 principal modes all yielded roughly
the same minimum residual, we considered solutions that con-
tained the majority of the energy in a single mode. By comparing
the weights on each principal mode for each solution, it was de-
termined that the 2 principal mode optimized DMD solution best
captured the primary dynamics of the experimental data since it
contained almost 85% of the energy of the system in the main
dominant mode.

To compare the dominant flow fields obtained using the op-
timized DMD technique for the model given by (2) and our ex-
perimental data, we computed the errors in the magnitude and
the phase of the velocity vectors at each point in the flow field.
Fig. 7 shows an overlay of the extracted dominant modes of the
model and the experimental data. The differences in velocity
magnitude and phase are shown in Figs. 8 and 9. The largest
errors arise in regions where the flow interacts with the spinning
cylinders. This is not unexpected since the PIV velocity data in
these regions is very noisy and does not provide any information
about the flow dynamics. Taken together, Figs. 7-9 demonstrate
substantial agreement between the analytical model and the ex-
perimental data.

4 COMPUTATION OF FTLE
One method that can be used to understand transport and

which quantifies localized sensitive dependence to initial con-
ditions in a given fluid flow involves the computation of finite-
time Lyapunov exponents (FTLE). In a deterministic setting, the
FTLE also gives an explicit measure of phase space uncertainty.
Given a dynamical system, one is often interested in determin-
ing how particles that are initially infinitesimally close behave

(a) Error in u-velocity (b) Error in v-velocity

Figure 8. VELOCITY ERROR IN (A) X -DIRECTION (U ) AND (B) Y -
DIRECTION (V ). BLUE COLORS DENOTE LITTLE TO NO ERROR
WHILE RED COLORS DENOTE PEAK ERROR.

(a) Error in vector magnitude (b) Error in vector phase

Figure 9. MAGNITUDE AND PHASE ERROR. FOR MAGNITUDE ER-
ROR BLUE REPRESENTS A REGION WITH A VELOCITY MAGNITUDE
LOWER THAN PREDICTED AND RED REPRESENTS HIGHER THAN
PREDICTED. PHASE ERROR WAS ALWAYS NEGATIVE, WHERE RED
REPRESENTS THE LEAST ERROR AND BLUE REPRESENTS THE
GREATEST ERROR.

as time t→±∞. It is well-known that a quantitative measure of
this asymptotic behavior is provided by the classical Lyapunov
exponent [24]. In a similar manner, a quantitative measure of
how much nearby particles separate after a specific amount of
time has elapsed is provided by the FTLE.

Although the FTLE theory can be extended to arbitrary di-
mension [25], here we consider a 2D velocity field vvv : R2× I→
R2 which is defined over the time interval I = [ti, t f ]⊂R and the
following system of equations:

żzz(t; ti,zzz0) = vvv(zzz(t; ti,zzz0), t), (3a)
zzz(ti; ti,zzz0) = zzz0, (3b)

where zzz = (x,y)T ∈ R2, zzz0 ∈ R2, and t ∈ I.
As previously stated, the trajectories of a dynamical system

in the infinite time limit can be quantified with the system’s Lya-
punov exponents. If one restricts the Lyapunov exponent cal-
culation to a finite time interval, the resulting exponents are the
FTLE. In practice, the FTLE computation involves consideration
of nearby initial conditions and the determination of how the tra-
jectories associated with these initial conditions evolve in time.
Therefore, the FTLE provides a local measure of sensitivity to
initial conditions and measures the growth rates of the linearized
dynamics about the trajectories. Since the details of the deriva-
tion of the FTLE [25–30] as well as applications that employ
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the FTLE [31–33] have appeared in the literature, we shall only
briefly summarize the procedure.

The solution of the dynamical system from the initial time
ti to the final time ti + T can be viewed as the flow map φ

ti+T
ti

which is defined as follows:

φ
ti+T
ti : zzz0 7→ φ

ti+T
ti (zzz0) = zzz(ti +T ; ti,zzz0). (4)

We consider an initial point located at zzz at ti = 0 along with a
perturbed point located at zzz+ δzzz(0) at ti = 0. Using a Taylor
series expansion, one finds that

δzzz(T ) =
dφ

ti+T
ti (zzz)
dzzz

δzzz(0)+O(||δzzz(0)||2). (5)

Dropping the higher order terms, the magnitude of the linearized
perturbations is given as

||δzzz(T )||=
√
〈δzzz(0),∆δzzz(0)〉, (6)

where ∆ is the right Cauchy-Green deformation tensor and is
given as follows:

∆(zzz, ti,T ) =

(
dφ

ti+T
ti (zzz(t))
dzzz(t)

)∗(
dφ

ti+T
ti (zzz(t))
dzzz(t)

)
, (7)

with * denoting the adjoint. Then the FTLE can be defined as

σ(zzz, ti,T ) =
1
|T |

ln
√

λmax(∆), (8)

where λmax(∆) is the maximum eigenvalue of ∆.
For a given zzz∈R2 at an initial time ti, Eq. (8) gives the max-

imum finite-time Lyapunov exponent for some finite integration
time T (forward or backward), and provides a measure of the
sensitivity of a trajectory to small perturbations.

As an example, Fig. 10 shows a snapshot of the forward time
FTLE field computed using the extracted PIV velocity field for
one of the flow tank’s experimental runs. One can see in Fig. 10
that there are ridges (in red) of locally maximal FTLE values.
These ridges correspond, to a good approximation (though see
Ref. [34]), to Lagrangian coherent structures, and effectively
separate the phase space into distinct dynamical regions.

5 SIMULATION RESULTS
As mentioned previously, particle image velocimetry is used

to extract the surface flow field of the tank. As such, surface
velocity data is provided at 7.5 frames per second and for a grid
of 39 by 39 points. The flow field data was then used to validate
the collaborative control strategy described in Sec. 1.

Figure 10. FORWARD FTLE FIELD COMPUTED USING THE EX-
TRACTED PIV VELOCITY FIELD. THE INTEGRATION TIME IS T = 10
WITH A GRID RESOLUTION OF 8 PIXELS IN BOTH X AND Y .

In our simulations, we employed an integration time of 0.01.
Since the flow field is sparse in relation to all the possible po-
sitions of the robotic vehicles, we employ the inverse distance
weighting method described in [35] to interpolate the flow field
to obtain the velocities at positions not on the grid. For a given
set of velocity measurements ûi(t) and corresponding positions
xi(t), the velocity vector at some point qk is given by

u(qk) = ∑
j

N

∑
i=1

wi jui( j)

∑ j ∑
N
i=1 wi j

where wi j = ‖xi( j)− qi‖−2. While there are numerous vector
field interpolation techniques available [35–37], we chose the in-
verse distance weighting method due to its ease of implementa-
tion as well as its reliance on data that can be obtained via local
sensing alone.

Figures 11(a)-(h) show the use of the control strategy de-
scribed in Sec. 1 to track the material lines (or coherent struc-
tures) separating regions with distinct flow dynamics in the flow
generated by our experimental tank. As mentioned previously,
these lines are quantified by local measures of FTLEs. In these
experiments, all the rotating cylinders were set at constant speed.
As such, the material lines exhibited in the flows are approxi-
mately time-independent and stochastic. And while we do see
the team occasionally traverse across regions with local maxi-
mum FTLE measures, the team quickly resumes straddling an-
other neighboring FTLE ridge. The most likely explanation for
this temporary break in the saddle straddling formation is that
the team approached a local saddle point in the flow. As the
team approaches the saddle point from one side, the other side of
the saddle point in the flow field reverses direction. As such, the
robots would be temporarily pushed away from the saddle point
until they find another manifold to track. This is backed by the
positions of rotating cylinders in relation to the FTLE ridges as
shown in Fig. 12. We note that saddle points are located in the
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(a) t=5 (b) t=10 (c) t=15 (d) t=20

(e) t=5 (f) t=10 (g) t=15 (h) t=20

Figure 11. FORWARD FTLE FIELD OVERLAID WITH TRAJECTORIES OF THE TEAM OF 3 ROBOTS TRACKING THE MANIFOLDS/COHERENT
STRUCTURES OF THE FLOW FIELD GENERATED BY OUR EXPERIMENTAL TANK. ROBOTS ARE SHOWN AS WHITE TRIANGLES AND THE
TRAJECTORIES OF THE STRADDLING ROBOTS ARE SHOWN AS WHITE SOLID LINES. THE ESTIMATED LCS IS SHOWN AS A WHITE LINE,
CORRESPONDING TO THE TRAJECTORY OF THE CENTER ROBOT. THE FRAMES ARE TAKEN AT T = 5, T = 10, T = 15 AND T = 20. THE
BOTTOM ROW IS A SET OF ZOOMED IN VIEWS OF THE FRAMES ABOVE THEM.

Figure 12. APPROXIMATE POSITIONS OF THE TANK CYLINDERS,
AND THEIR ROTATIONAL DIRECTIONS, IN RELATION TO THE COM-
PUTED FLTE FIELD.

middle of every set of four rotating cylinders.

6 FUTURE WORK
We presented the development of a 60 cm square experi-

mental testbed to enable the validation and evaluation of dis-
tributed multi-robot tracking of manifolds and coherent struc-
tures in flows. In addition, we reported on the development of a
smaller scale flow tank for generating realistic flows that exhibit
coherent structures that are important for quantifying transport

phenomena. Furthermore, these structures play an important role
in developing minimum energy and minimum time optimal paths
for AUVs in the ocean. We showed how the flow fields generated
with our experimental testbed exhibit coherent structures quan-
tified by local measures of maximum FTLE and validated our
existing multi-robot tracking strategies using the extracted flow
field data.

An immediate direction for future work is to evaluate the
soundness of our experimental testbed in the generation of con-
trollable and repeatable realistic flow fields. Numerous exper-
imental and computational techniques can be used to evaluate
the soundness of the flow fields extracted from our system. One
technique is to reverse the flow field and compare the resulting
FTLE structures with those computed using the forward flow
field. This can be easily achieved by reversing the rotational
direction of every cylinder in the tank. A second approach is to
compare the extracted flow field with a partial differential equa-
tion model of the flow field in the tank. This is one direction of
significant interest.

Furthermore, precise control of the flow and its LCS fea-
tures can be achieved in the low Reynolds number tank, allow-
ing us to fine-tune our tracking strategies in a number of ways.
For example, the central four gyres in this tank form a boundary-
isolated “four roller mill”, when driven by rods and a four gyre
model when driven by disks. A model AUV placed into this re-
gion will directly reveal the role of robot shape on its transport,
as determined by its interaction with robot-scale shear and strain
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Figure 13. MICRO ASV UNDER DEVELOPMENT FOR USE IN PRO-
TOTYPING TRACKING STRATEGIES IN THE 3M×3M TANK, WITH A
US QUARTER FOR REFERENCE.

Figure 14. COHERENT STRUCTURES IN THE SANTA BARBARA
CHANNEL DURING A JUNE 2012 EDDY EVENT COMPUTED USING
OCEAN SURFACE CURRENT DATA PROVIDED BY THE SCRIPPS IN-
STITUTION OF OCEANOGRAPHY (UCSD).

signatures in the flow. This is of particular interest since our
tracking strategies depend on local sampling of the flow field us-
ing a robot’s onboard sensors. By understanding the interactions
between the robot shape and the surrounding fluid, we can bet-
ter understand their impact on the robot’s ability to extract flow
information from their onboard sensors.

To enable experimental validation of all tracking strategies
using a multi-vehicle testbed, we have begun scaling our exper-
imental testbed to a 3m×3m×0.5m flow tank. The larger tank
enables the development and deployment of micro-autonomous
surface vehicles to enable validation and evaluation of all track-
ing strategies in a controlled laboratory setting. This strategy
provides an economic way to benchmark and evaluate various
AUV/ASV coordination strategies in the presence of more real-
istic fluid dynamics. The micro-ASV under development for this
task is pictured in Fig. 13. A fitting direction for future work in-
cludes the consideration of ASV and AUV dynamics in the LCS
tracking strategy.

Finally, we are interested in extending our tracking strategy
for use with real ocean data. The California coast is highly in-
strumented with high-frequency (HF) radar ocean current moni-
toring stations which provide high-resolution ocean current data
at various locations along the coast. Since the goal of the ex-

perimental testbed is to emulate ocean flows, we have begun to
apply the cooperative control strategy to areas along the coast
for which there is sufficient current data. In particular, the Santa
Barbara Channel is highly interesting, primarily because there is
a recurring small-scale eddy (roughly 40 km in diameter) which
appears between the Channel Islands and the mainland. This
eddy results in an area of highly divergent flow stringing between
the mainland and San Miguel Island, which can be easily seen
by applying the FTLE technique on the interpolated ocean data.
Figure 14 shows a snapshot of the forward-time FTLE field for
the Santa Barbara Channel during a strong eddy event in June
2012.

Since this area is well-instrumented and exhibits flow fea-
tures of interest to us, it provides an even larger scale simulation
testbed for our tracking algorithms. If the viability of the track-
ing strategy can be demonstrated for this area, it can then be ap-
plied to areas for which there is not an abundance of information.
We can then use the tracking strategy in simulations of realistic
situations in the ocean, such as oil spills or biological events.
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