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ABSTRACT

The construction of bifurcation diagrams is an essential component of understanding nonlinear dynamical systems. The task can be chal-
lenging when one knows the equations of the dynamical system and becomes much more difficult if only the underlying data associated with
the system are available. In this work, we present a transformer-based method to directly estimate the bifurcation diagram using only noisy
data associated with an arbitrary dynamical system. By splitting a bifurcation diagram into segments at bifurcation points, the transformer
is trained to simultaneously predict how many segments are present and to minimize the loss with respect to the predicted position, shape,
and asymptotic stability of each predicted segment. The trained model is shown, both quantitatively and qualitatively, to reliably estimate the
structure of the bifurcation diagram for arbitrarily generated one- and two-dimensional systems experiencing a codimension-one bifurcation
with as few as 30 trajectories. We show that the method is robust to noise in both the state variable and the system parameter.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0204714

We consider the problem of generating bifurcation diagrams
from data. Traditionally, one must first use data-driven mod-
eling techniques, such as system identification, to identify the
governing equations of the dynamical system that is associated
with the data. With the governing equations in hand, one can
then employ standard analytical and numerical methods to find
the bifurcation diagram. However, this approach is data-hungry
and sensitive to noise, making it unsuitable for many scenar-
ios. In this article, we provide a detailed description of how the
bifurcation diagram prediction task can be instead reformulated
as a task suitable for deep learning. Using a slightly modified
DEtection TRansformer (DETR)1 architecture, we demonstrate
the approach on a variety of one-dimensional local bifurcations
and show how the method can be extended for a type of two-
dimensional local bifurcation. In each scenario, accurate bifur-
cation diagrams can be generated from a small number of very
noisy trajectories by leveraging the inherent pattern-matching
capabilities of transformers.

I. INTRODUCTION

Dynamic system behavior can often be impacted by changes
in system parameters. In general, small continuous changes in

system parameters yield similarly small continuous changes in sys-
tem behavior. Nevertheless, for a certain class of systems, small
continuous changes in these parameters around certain values can
lead to large changes in the overall dynamics of the system. At
these values, fixed points, periodic orbits, and other phenomena
representing the topological structure of the system may suddenly
appear or disappear. This is known as bifurcation and each value
where this occurs at is known as a bifurcation point of the system.
Understanding how and when bifurcations occur in dynamic sys-
tems is crucial to understanding a wide variety of phenomena across
physics, biology, chemistry, and engineering.2 For example, a saddle-
node bifurcation can lead to an outbreak of spruce budworm,3 a
transcritical bifurcation can cause a switch from spontaneous to
stimulated laser emission for solid-state lasers,4 a pitchfork bifur-
cation is associated with the transition from conduction to convec-
tion in Rayleigh–Bénard convection,5 while a Hopf bifurcation can
induce a transition of a swarm from a stationary to an oscillating
state.6

Bifurcation diagrams provide a valuable tool for visualizing and
understanding the topological structure of a system vs a parameter
that contains a bifurcation point, a bifurcation parameter. Suppose
we have a dynamical system x′(t) = f(x(t), r) that has some bifurca-
tion parameters r ∈ R

m, where x ∈ R
n is the state of the system and

f : R
n+m → R

n is the governing equation of the system. When f is
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known, bifurcation diagrams are typically generated through con-
tinuation software such as AUTO.7 This approach requires familiar-
ity with both the system and the software. Unfortunately, this can
be problematic as AUTO is known to be very tricky to use and may
also fail.8 In addition, when the governing equation f of the system
is not known and only time-series data of the system are available,
these tools cannot be used at all. One approach in this scenario
involves two steps: first, identify a model to the underlying system at
some values of the bifurcation parameter using system identification
techniques, and second, interpolate between these to produce the
bifurcation diagram. To produce accurate results with this method,
a large amount of data are needed as typically a separate model is fit-
ted at every examined value of the bifurcation parameter. Even when
this data is available, the resulting prediction is coarse in the bifur-
cation parameter and sensitive to noise in the estimated value of the
bifurcation parameter.

In this work, we instead present the first attempt at the novel
problem of directly predicting the bifurcation diagram from time-
series data. The model in this work is formulated to produce bifur-
cation diagrams of a single dimension against a single bifurcation
parameter and, as such, this work is primarily focused on one-
dimensional local bifurcations. In addition, however, we demon-
strate the effectiveness on a slice of the Hopf bifurcation suggesting
that this method can be easily extended to higher-dimensional sys-
tems in certain circumstances. Since systems that vary immensely in
their overall topological structure can produce bifurcation diagrams
that, at least locally, are very similar, directly predicting the bifur-
cation diagram allows knowledge on how the bifurcation parameter
affects the topological structure of the system to be extracted when
existing methods fail. In particular, by pooling information from
the dynamics across multiple values of the bifurcation parameter,
we can learn structural information about a system in low-data
high-noise scenarios. Using a slightly modified version of the DETR
(DEtection TRansformer) architecture,1 we demonstrate the abil-
ity to accurately predict the bifurcation diagram within a given
range with as few as 30 noisy impulse responses for an arbitrary
continuous-time system. To avoid repetition, in the remainder of
this work, we will refer to the simulated dynamics used as the
input data for the model as the input trajectories and the predicted
segments of the bifurcations diagram as the predicted branches.
The code and trained model used in this paper is available at
https://github.com/lzhornyak/bifurcs.

II. BACKGROUND

A. System identification

The task of identifying the underlying model for a dynamical
system given numeric data is known as system identification. Sys-
tem identification generally makes the implicit assumption that the
parameters of the system remain constant across all trajectories used
or that these parameter values are known.

Sparse Identification of Nonlinear Dynamics (SINDy)9 pro-
vides a method to directly identify the underlying system given a set
of trajectories. Bifurcating systems can be modeled by including the
bifurcation parameter as an additional state variable and the method
can be made to be somewhat resilient to noise by filtering the pro-
vided data. However, this is only possible due to strong assumptions

about the system and the data. SINDy assumes that the system can
be expressed as the sum of a very sparse subset of pre-selected basis
functions and, when examining a bifurcating system, the values of
the parameter for each trajectory in the data are exactly known.

Opposed to explicit parameter identification provided by
SINDy, a Proper Orthogonal Decomposition Neural Network
(POD-NN)10,11 aims to build a single implicit model of the system
for all its variables. POD-NN trains a neural network to map the
variables (e.g., system parameter or position) onto their correspond-
ing coefficients in the reduced basis space provided by a proper
orthogonal decomposition, allowing a solution to be recalled. One
can thus construct the bifurcation diagram of the system by map-
ping the asymptotic solution vs the system parameter provided as
input. Since each parameter value can only correspond to one solu-
tion, this method can only generate one branch of the bifurcation
diagram and cannot represent unstable branches. As a consequence,
one must also be sure that all provided data corresponds to only one
branch.

B. Sequence modeling

Transformers, first popularized by Vaswani et al.,12 are a
method to encode and relate a sequence of discrete tokens (vectors)
in one domain and to use this information to recurrently decode a
sequence of queries (vectors) in another domain. They differ from
other sequence modeling approaches in their use of attention as the
sole method of token comparison. In contrast to recurrent neural
networks (RNNs) based methods such as Long Short-Term Memory
networks (LSTMs)13 and Gated Recurrent Units (GRUs),14 attention
compares all input tokens in parallel and thus does not need to bal-
ance retention of information and updating for new data. In contrast
to convolutional methods,15 attention learns relations between all
tokens and does not require a window with a uniform spacing of
tokens. This is because attention learns structural information (e.g.,
ordering and spacing) from the token simplicitly. These reasons
make transformer architectures particularly well suited to predict-
ing a bifurcation diagram from arbitrary impulse responses, where
spacing in r of the trajectories used as tokens is random and even the
ordering may be uncertain due to noise.

DETR1 extends the basic transformer architecture by having
the queries used for the decoder be a fixed set of learned queries,
eliminating the need for recursion in the output. In particular,
this allows an ordered set of input tokens to directly produce an
unordered set of predictions. Each element in the output set is
preferentially focused on some subset of the input set through the
attention mechanism, the learned queries thus act as templates for
different types of bifurcation branches. This effect is demonstrated
in Fig. 1. Each branch selectively prioritizes the trajectories that
converge to that branch but still allows some information from
other trajectories to contribute, a feature of transformers that allow
coordination between predictions.

III. METHODS

A. Architecture

We use the DETR architecture as the basis of our model.
This consists of two parts: an encoder that takes a set of system
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FIG. 1. Visualization of the attention in the last layer of the decoder from each
valid prediction onto the noisy trajectories used as inputs. The top row shows the
ground truth bifurcation diagram (left) and the prediction produced by the model
(right), plotted as the state variable x vs the system parameter r . The bottom two
rows show the system trajectories (see Fig. 2) shaded according to the atten-
tion from the corresponding predicted branch, indicated by color, plotted as state
variable vs time step t. A higher attention (darker color) indicates that trajectory is
utilizedmore in producing the prediction. For example, for the blue stable branch at
0, those trajectories that converge to 0 generally have higher attention. All figures
are plotted on the same scale for x.

trajectories and produces an embedding and a decoder that uses this
embedding to transform a set of learned queries into a set of predic-
tions that each represents a predicted bifurcation branch. For a brief
overview of the function of this architecture and an explanation of
the rationale behind its selection, see Sec. II B.

The encoder consists of N = 4 identically structured sequen-
tial blocks with two learned layers each, not shared between blocks.
The encoder is provided with a set of trajectories, each composed
of 128 points sampled as described in Sec. IV. These trajectories are
each augmented with their associated value of the system parameter
using sinusoidal position encoding.12 The decoder likewise con-
sists of M = 4 identically structured sequential blocks with two
learned layers each with 50 learned queries provided as an input.
The embeddings produced by the encoder are selected through the
attention mechanism and once again are augmented with their asso-
ciated value of the system parameter, before being combined with
the learned queries. The output of the final layer of the decoder is
passed through a feed-forward network (FFN) to four predictions
representing a predicted segment: a set of parameters represent-
ing the shape of the curve, the start and end points of the curve
on the bifurcation diagram, the stability of the segment, and the

model’s confidence that its prediction is correct. Figure 2 sum-
marizes how the system trajectories are transformed into the final
prediction. For a more thorough explanation of attention and the
DETR architecture, see Appendix A in supplementary material.

B. Loss function

A four part loss function is used during training,

L = Lpos + Lshape + Lstab + 0.01Lconf.

Here, Lpos is the position loss, Lshape is the shape loss, Lstab is the sta-
bility loss, and Lconf is the confidence loss. We describe each term in
Secs. III B 1–III B 5. The weights of each term are experimentally
selected to ensure that the magnitude of the losses is approximately
equal toward the end of the trajectory to prevent one loss term
from dominating. For a detailed description of how the bifurcation
diagram is created from the predicted curve segments, see Sec. IV.

1. Prediction assignment

In order to associate predicted curve segments with the ground
truth, the Hungarian algorithm16 is used to assign one predicted
segment to each ground truth to calculate the loss above. The assign-
ment cost used is a weighted combination of the shape, position, and
stability losses C = Lpos + 0.1Lshape + Lstab. This results in the cre-

ation of a mapping H : b ↔ b̂ between the ground truth branches b

and the assigned predictions b̂, composed of nH entries. In the equa-

tions below, let the index i correspond to indices of b̂ and index j
correspond to indices of b.

2. Position loss

The position loss Lpos trains the start and end of each predicted
branch. It is defined as the L1 loss between the predicted start and
end coordinates of the curve segment defining a branch and the
ground truth as assigned above,

Lpos =
1

nH

∑

i∈H

|r̂0,i − r0,j| + |r̂1,i − r1,j| + |x̂0,i − x0,j| + |x̂1,i − x1,j|,

where (r0, x0) is the start and (r1, x1) is the end of the ith segment in
the bifurcation diagram space. Specifically, r and x are the value of
the bifurcation parameter and fixed point, respectively.

3. Shape loss

The shape loss Lshape trains the path each branch takes between
its start and end points. It is defined as the L2 loss between the
parameters of predicted approximation ẑ to the shape of a branch of
the bifurcation diagram and the true shape z of the assigned branch,

Lshape =
1

nH

∑

(i,j)∈H

∥

∥ẑi − zj

∥

∥

2
.

4. Stability loss

The stability loss Lstab trains the predicted steady-state behavior
of the branch, in this case either asymptotically stable or unstable.
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FIG. 2. Given a set of data from an unknown system, comprised of system trajectories and the estimated bifurcation parameter in that configuration, our approach can
reliably reconstruct the predicted bifurcation diagram. The predicted confidence ŷ is used as the basis for the non-max suppression. Figure 6 in supplementary material
provides a more detailed view of the internal architecture of the trained model.

It is defined as the binary cross-entropy loss between the predicted
stability ŝ and an indicator function Is that is 1 if ground truth curve
segment j represents a branch of the bifurcation diagram that is
asymptotically stable and 0 otherwise,

Lstab =
1

nH

∑

(i,j)∈H

−
(

Is[j] log(ŝ) + (1 − Is[j]) log(1 − ŝ)
)

.

5. Confidence loss

Finally, the confidence loss Lconf trains the model’s confidence
in its own predictions, ŷ. It is described by the balanced sum of the
binary cross-entropy loss of the correct and incorrect predictions,

Lconf = −
1

nH

∑

i∈H

log(ŷi) −
1

n − nH

∑

i/∈H

log(1 − ŷi).

C. Non-max suppression

We have so far defined a model that predicts a set of segments
defined by their start and end positions, shape, stability, and the con-
fidence the model has in the prediction. Unfortunately, the model
tends to duplicate its prediction, producing many predictions for
each leg of the bifurcation diagram. While DETR-based systems can
typically forgo non-maximum (non-max) suppression (NMS) sys-
tems in vision contexts,1 we find that some such system is needed
in this context. Since curve segments can be continuously deformed
to any other segment, this may be the result of the model “hedging”
between nearby possibilities.17

To remove duplicate prediction, we need to define the distance
between curve segments. There are a variety of techniques used to
find this distance. From basic methods such as mean absolute error
(MAE) and the mean squared error (MSE) to more specialized tech-
niques such as dynamic time warping18 and curve length,19 most
methods will produce adequate results for the context of NMS.

Predicting bifurcation diagrams has unique requirements that
help in selecting an appropriate measure. As the start and end
points of each segment define critical points of the model, the met-
ric should not reject outliers as these are often what differentiates
nearby branches. Additionally, the approach must be computation-
ally efficient to allow for the computation of set statistics on the test
sets, ruling out most specialized comparison algorithms. However,
since predicted segments are directly compared against each other
with no external source of error, noise is not a concern. For these
reasons, we select the MSE as the basis of our distance function,20

d(a, b) = min(1, αMSE(a, b)). (1)

Here, MSE is the MSE loss between the two segments and α is a fixed
scaling factor.

The distance function is restricted to the range (0, 1) to allow
it to be used as a discounting function for NMS. Inspired by Soft-
NMS,21 the NMS procedure is composed of the following steps:

1. Remove all predictions whose confidence is less than some
threshold β1.

2. Select the highest confidence prediction and add it to the list of
predicted segments.
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3. Discount the confidence of all remaining predictions by multi-
plying their confidence by their distance to this segment.

4. If the highest confidence prediction remaining has a confidence
greater than β2 > 0, return to step 2.

D. Evaluation

To evaluate the predicted set of curve segments against the
true bifurcation diagram, we need to extend the notion of distance
between two segments to the distance between two sets of seg-
ments. While this appears similar to the problem of matching two
shapes, traditional shape matching metrics strive to be invariant to
some set of transformations, noise, and outliers.22 This makes most
traditional shape and skeleton similarity metrics unsuitable for mea-
suring the similarity between two bifurcation diagrams. Instead, we
create a simple extension to the distance measure in Eq. (1).

To extend a pairwise distance measure to a bifurcation similar-
ity metric, pairwise correspondences between the set of predicted
curve segments and the ground truth must first be created; as in
Sec. III B, the Hungarian algorithm is used to produce this set of

correspondences Ĥ. Note that, instead of using losses to define the
assignment cost, here the distance function is used directly. We thus
define the bifurcation distance metric between the set of predicted
curve segments A and true segments B as

BDM(A, B)

=
1

nB





∑

(i,j)∈Ĥ

d(ai, bj) +
∑

i/∈Ĥ

(

min
b∈B

d(ai, b)

)

+
(

nB − nĤ

)



 . (2)

Here, the sum of the distances between the assigned pairs of predic-
tions and ground truths is the basis of the metric. For unassigned
predictions, the closest distance to the ground truth is added, while
for each unassigned ground truth, the maximum distance (1) is
added. This is then normalized by the number of ground truth
segments. The bifurcation similarity score (BSS) is thus defined as

BSS(A, B) = min(0, 1 − BDM(A, B)). (3)

IV. IMPLEMENTATION

A. System definition

We consider all one-dimensional (1D) polynomial differential
equations with a single variable of the form

dx

dt
= f(x, r) =

3
∑

i=0

[

(ai + bi(r + c/2))(x + d/2)i
]

. (4)

This formulation is selected to compactly represent all prototypical
local bifurcations of a single variable phase space and their combi-
nations. These can be grouped into three types identified by their
prototypical form,2

• saddle-node bifurcation: ẋ = r + x2,
• transcritical bifurcation: ẋ = rx − x2,
• pitchfork bifurcation: ẋ = rx ± x3.

The terms ai, bi, c, and d define the system and, without loss of
generality, are sampled from a uniform distribution with a range of

−1 to +1. To ensure that the space of possible bifurcations is ade-
quately covered, a random subset of these parameters is set to zero
for each equation in the training data.

B. Input data

To generate the simulated dynamics of each system that serves
as the input to the model, we randomly select 200 configurations of
the system. Each configuration consists of an initial value x0 ran-
domly selected from −4 to +4 and the value of the bifurcation
parameter, randomly set to a value from −1 to +1. This system is
then simulated from t = 0 to t = 10 and 128 points, geometrically
spaced, are sampled from the resulting trajectory. The geometric
spacing of the sampled points ensures that the model is provided
with sufficient fidelity in the small timescale transient dynamics
of the system while still providing the long-term behavior of the
system. Additionally, it conveniently allows for representing config-
urations with different time constant with the same time-series.

C. Bifurcation diagram

As we are considering only local bifurcations of a single vari-
able, the bifurcation diagram is equivalent to the zero level set of
f, namely, f(x, r) = 0. To convert this into a set of curve segments
that can be predicted by the transformer model, a consistent crite-
rion must be selected. This criterion must split the zero level set into
curve segments such that (a) curve segments meet only at their end
points and (b) curve segments end whenever their stability changes
(since, by our definition, each curve segment is assumed to have the
same stability across it).

This leads naturally to the selection of the critical points of
the bifurcation diagram, those points where f ′(x) = 0, as the points
where the curve segments are split. Specifically, curve segments are
split when |f ′(x)| < ε along the curve, for some epsilon. The results
of this method can be seen in Fig. 3(a).

For the model to predict these curve segments, they now must
be converted into a vector. These vectors will contain the start and
end points of the curve, the stability of the curve (0 if stable and 1
otherwise), and a parametric representation of the shape of the curve
between the end points. For simplicity, 100 points, evenly spaced
along the curve in the axis of the bifurcation parameter, are used
to represent the curve; these are normalized using the start and end
points to values from 0 to 1, decoupling the shape and the positional
prediction of the curve. Other parametric representations, such as
Bezier curves, are possible. However, our representation carries the
additional benefit of not making implicit assumptions on the form
of branches, allowing more complicated branches to be represented
without modification.

V. RESULTS

A. Performance

As shown in Fig. 3 and in Appendix B in supplementary
material and summarized in Table II the trained model is able to
accurately and reliably reconstruct the structure of all basic bifurca-
tions, as described in Table I. In contrast, the model is only able to
locate the bifurcation points (indicated by the ends of the predicted
branches) to within about 0.1 units of the true bifurcation point
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FIG. 3. Ground truth and predicted bifurcation diagram for the system f(x) = rx
+ x2 − x3 with each segment shown in a different color; unstable branches of
the diagram are shown with a dashed line. The bifurcation diagram in (b) is pre-
dicted using 30 trajectories with additive Gaussian noise of standard deviation
0.1. (a) Ground truth bifurcation diagram, (b) predicted diagram with 30 noisy
trajectories; BSS = 0.7991.

when a branch is predicted. This may simply be the natural result of
bifurcation points and how trajectories are sampled in the data gen-
eration scheme provided in Sec. IV; trajectories converge or diverge
increasingly slowly as one approaches the bifurcation point while the
geometry of the system can change rapidly. Given that there may be
only a handful of trajectories in proximity to the bifurcation point,
the model must rely on interpolation between trajectories to deter-
mine when a branch ends. The interpretation of the model as an
interpolator between trajectories is also supported by the structure

TABLE I. Randomized forms of several different types of bifurcation. Here, ai, bi, c,

d, and ei are sampled from a uniform distribution with a range of −1 to +1.

Bifurcation Randomized form

Saddle-node f(x, r) = b0(r + c/2) − a2 (x + d/2)2

Transcritical f(x, r) = b1(r + c/2)(x + d/2) − a2 (x + d/2)2

Pitchfork f(x, r) = b1(r + c/2)(x + d/2) − a3 (x + d/2)3

Arbitrary See Eq. (4)
Hopf f(x, y, r) = (b0(r + c/2) − a0(x + d/2)2 − e0 y2))

× (x + d/2) − 10 e1 y
g(x, y, r) = (b0(r + c/2) − a0(x + d/2)2 − e0 y2))y

− 10 e1 (x + d/2)

of the DETR model itself: the learned queries act as templates that
selectively match to the input trajectories that inform the branch
that the query is responsible for, producing the selection behavior
observed in Fig. 1.

B. Robustness

Another consequence of using the complete set of trajectories
to generate entire branches rather than a more local approach may
be the robustness to both large additive noise and a reduction in the
number of supplied trajectories summarized in Table II. Figure 4
shows that small noise produces little to no impact on the resulting
predictions, with larger values resulting in a gradual reduction in
score. Similarly, Fig. 5 shows that, for a test set of arbitrary functions
generated as in Sec. IV, there is minimal reduction in the resulting
score as the number of trajectories decreases until there is insuffi-
cient information and a sharp drop in score occurs. These results
show how performance decreases with randomly sampled trajecto-
ries; appropriate coverage of the initial positions and bifurcation
parameter when selecting trajectories can maintain performance
with fewer trajectories by ensuring that trajectories are sampled
from all regions of the bifurcation diagram. This robustness is
present despite the model being trained without data augmentation.

While the model can overcome noise and a reduction in tra-
jectories by interpolating between the remaining trajectories, the
model is unable to reliably extrapolate outside of the range of pro-
vided trajectories. Specifically, the model is unable to predict the
behavior of the system on one side of a bifurcation only given

TABLE II. Average BSS across 1000 random systems as described in Table I. With

the exception of the Hopf bifurcation (see Sec. V C), all predictions are produced

from the same model. Scores are shown for 200 provided trajectories, 200 trajecto-

ries distorted with Gaussian noise with standard deviation 0.2, 30 trajectories, and 30

trajectories with the same noise.

200 Traj. +0.2σ 30 Traj. +0.2σ

Saddle-Node 0.9799 0.9686 0.9604 0.9523
Transcritical 0.8956 0.8931 0.8478 0.8288
Pitchfork 0.9223 0.9386 0.8839 0.8759
Arbitrary 0.7793 0.7703 0.7574 0.7470
Hopf 0.7916 0.7786 0.7625 0.7603
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FIG. 4. Performance of the model with 200 trajectories as measured by the BSS
[Eq. (3)] vs the standard deviation of the normal noise added to both the state and
parameter values of the supplied trajectories. Results shown are for systems as
defined in Eq. (4).

trajectories on the other side of the bifurcation. Given how a bifur-
cation point represents a complete change in the geometry of a
system, the task of predicting the diagram beyond the bifurcation
fundamentally requires identifying the underlying system using the
dynamics exhibited by the provided trajectories. Further exploration
is required to determine if this is feasible.

C. Higher dimensions

While the results discussed so far have all been bifurcations in
1D systems, this model can easily be extended to systems of higher

FIG. 5. Performance of the model as measured by the BSS vs the number of sup-
plied trajectories, with no added noise. Results shown are for systems as defined
in Eq. (4).

dimensions if some restrictions are placed on the system. As the
model predicts a bifurcation diagram of one variable against the
bifurcation parameter, higher-dimensional systems should have all
examined fixed points on a single line through the state space.

Consider an arbitrary system that experiences a Hopf bifur-
cation, as defined in Table I, where y is the second dimension of
the system. If we assume (as defined) that all fixed points in this
system occur when y = 0, we can define a bifurcation diagram as
the locations where f(x, 0, r) = 0 on the (x, r) plane. This captures
the limits of the oscillations induced by the Hopf bifurcation and
produces a bifurcation diagram that appears visually similar to a
pitchfork bifurcation; see Appendix B in supplementary material,
for examples.

If we fine-tune the model used previously on this Hopf bifur-
cation, providing only the trajectories in x and not y, we achieve
the results described in Table II. This suggests the following: if we
can generate simulated data such that our desired bifurcation dia-
gram lies in the domain of the bifurcation diagrams of the training
systems, this approach should be able to reliably predict the major
features of the topological structure of the system.

VI. CONCLUSION

We introduce a novel approach to directly estimate the bifur-
cation diagram of a dynamical system from noisy data. By dividing
a bifurcation diagram at the bifurcation points into its component
branches, we are able to structure the problem to leverage the DETR
architecture. The transformer is trained to predict the number of
branches and minimize the loss with respect to the position, shape,
and stability of each predicted branch. The input trajectories are
augmented with their associated system parameter using a sinu-
soidal embedding scheme, allowing the uncertainty in the parameter
for a single trajectory to be mitigated through relational information
to other input trajectories. The resulting model, despite no augmen-
tation with regard to noise or trajectory count, is able to reliably
predict the structure of the bifurcation diagram with as few as 30
trajectories even when there is significant noise present in both the
state variables and system parameters.

SUPPLEMENTARY MATERIAL

The supplementary material is composed of two appendixes.
Appendix A provides a brief overview of the mechanism of atten-
tion and the components of DETR. Appendix B includes additional
results on randomly selected systems.

ACKNOWLEDGMENTS

We thank Tom Zhang Jiahao, Jasleen Dhanoa, and Ben Shaf-
fer for their many helpful discussions. This work was funded by
the National Science Foundation (Award Nos. CMMI 2121887 and
CMMI 2121919).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Chaos 34, 051102 (2024); doi: 10.1063/5.0204714 34, 051102-7

Published under an exclusive license by AIP Publishing

 23 M
ay 2024 17:34:29

https://pubs.aip.org/aip/cha
https://doi.org/10.60893/figshare.cha.c.7201125
https://doi.org/10.60893/figshare.cha.c.7201125


Chaos ARTICLE pubs.aip.org/aip/cha

Author Contributions

Lyra Zhornyak: Conceptualization (equal); Data curation (lead);
Formal analysis (lead); Investigation (lead); Methodology (lead);
Project administration (equal); Resources (lead); Software (lead);
Validation (lead); Visualization (lead); Writing – original draft
(lead); Writing – review & editing (equal). M. Ani Hsieh: Concep-
tualization (equal); Funding acquisition (lead); Investigation (sup-
porting); Methodology (supporting); Project administration (equal);
Supervision (lead); Writing – original draft (supporting); Writing –
review & editing (equal). Eric Forgoston: Investigation (support-
ing); Supervision (supporting); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.

REFERENCES
1N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” in European Conference on
Computer Vision (Springer, 2020), pp. 213–229.
2S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering (Westview Press, 1994).
3D. Ludwig, D. D. Jones, and C. S. Holling, “Qualitative analysis of insect outbreak
systems: The spruce budworm and forest,” J. Anim. Ecol. 47, 315 (1978).
4H. Haken, “Laser theory,” in Atoms, Molecules and Lasers, Trieste, 17
January–10 April 1973 (International Atomic Energy Agency, Vienna),
pp. 283–314, https://www.iaea.org/publications/3120/atoms-molecules-and-lasers
-trieste-17-jan-10-apr-1973.
5P. Bergé and M. Dubois, “Rayleigh-Bénard convection,” Contemp. Phys. 25, 535
(1984).
6E. Forgoston and I. B. Schwartz, “Delay-induced instabilities in self-propelling
swarms,” Phys. Rev. E 77, 035203 (2008).
7E. J. Doedel and B. Oldeman, AUTO-07p: Continuation and Bifurcation Software
(Concordia University, Montreal, QC, 1998).
8B. Ermentrout and A. Mahajan, “Simulating, analyzing, and animating dynami-
cal systems: A guide to XPPAUT for researchers and students,” Appl. Mech. Rev.
56, B53 (2003).

9S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,” Proc. Natl.
Acad. Sci. U.S.A. 113, 3932 (2016).
10J. S. Hesthaven and S. Ubbiali, “Non-intrusive reduced order modeling of
nonlinear problems using neural networks,” J. Comput. Phys. 363, 55 (2018).
11F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven, “An artificial neural network
approach to bifurcating phenomena in computational fluid dynamics,” Comput.
Fluids 254, 105813 (2023).
12A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Adv. Neural Inf. Process.
Syst. 30, 5998–6008 (2017).
13S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.
9, 1735 (1997).
14R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (GRU) neural
networks,” in 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS) (IEEE, 2017), pp. 1597–1600.
15J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning,” in International Conference on Machine Learning
(PMLR, 2017), pp. 1243–1252.
16H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Res.
Logist. 52, 7 (2005).
17R. Jena, L. Zhornyak, N. Doiphode, P. Chaudhari, V. Buch, J. Gee, and J. Shi,
“Beyond map: Towards better evaluation of instance segmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Computer Vision Foundation, 2023), pp. 11309–11318.
18D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns
in time series,” in Proceedings of the 3rd International Conference on Knowl-
edge Discovery and Data Mining (Association for the Advancement of Artificial
Intelligence, 1994), pp. 359–370.
19A. Andrade-Campos, R. De-Carvalho, and R. Valente, “Novel criteria for
determination of material model parameters,” Int. J. Mech. Sci. 54, 294
(2012).
20C. F. Jekel, G. Venter, M. P. Venter, N. Stander, and R. T. Haftka, “Similarity
measures for identifying material parameters from hysteresis loops using inverse
analysis,” Int. J. Mater. Form. 12, 355 (2019).
21N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-NMS—Improving object
detection with one line of code,” in Proceedings of the IEEE International Confer-
ence on Computer Vision (Institute of Electrical and Electronics Engineers, 2017),
pp. 5561–5569.
22R. C. Veltkamp and M. Hagedoorn, “Shape similarity measures, properties and
constructions,” in International Conference on Advances in Visual Information
Systems (Springer, 2000), pp. 467–476.

Chaos 34, 051102 (2024); doi: 10.1063/5.0204714 34, 051102-8

Published under an exclusive license by AIP Publishing

 23 M
ay 2024 17:34:29

https://pubs.aip.org/aip/cha
https://doi.org/10.2307/3939
https://www.iaea.org/publications/3120/atoms-molecules-and-lasers-trieste-17-jan-10-apr-1973
https://doi.org/10.1080/00107518408210730
https://doi.org/10.1103/PhysRevE.77.035203
https://doi.org/10.1115/1.1579454
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.compfluid.2023.105813
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1002/nav.20053
https://doi.org/10.1016/j.ijmecsci.2011.11.010
https://doi.org/10.1007/s12289-018-1421-8

