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ABSTRACT

Two elementary models of ocean circulation, the well-known double-gyre stream function model and a single-layer quasi-geostrophic (QG)
basin model, are used to generate flow data that sample a range of possible dynamical behavior for particular flow parameters. A reservoir
computing (RC) machine learning algorithm then learns these models from the stream function time series. In the case of the QG model, a
system of partial differential equations with three physically relevant dimensionless parameters is solved, including Munk- and Stommel-
type solutions. The effectiveness of a RC approach to learning these ocean circulation models is evident from its ability to capture the charac-
teristics of these ocean circulation models with limited data including predictive forecasts. Further assessment of the accuracy and usefulness
of the RC approach is conducted by evaluating the role of both physical and numerical parameters and by comparison with particle trajecto-
ries and with well-established quantitative assessments, including finite-time Lyapunov exponents and proper orthogonal decomposition.
The results show the capability of the methods outlined in this article to be applied to key research problems on ocean transport, such as pre-
dictive modeling or control.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0119061

I. INTRODUCTION

The inherently high-dimensional and nonlinear nature of fluid
dynamics presents formidable barriers to the analysis, prediction, and
simulation of real-world and model flows.1 Fluid-coupled control2–5 of
autonomous vehicles that can perform a variety of sensing tasks in the
ocean and atmosphere6,7 is just two examples of common tasks that
generally lead to difficult optimization problems. Large scale multi-
physics systems such as atmospheric or oceanic circulation tend to
present additional complexities, placing efficient or detailed prediction
in such systems far out of reach of current methods. Reduced models
like quasi-geostrophy play an important role by identifying dynamical
regimes and in facilitating studies that are not possible in more cum-
bersome models. More recently, quasi-geostrophic (QG) models have
served as components within more complex models and as a frame-
work to reconstruct and assimilate flows from satellite data.8–10

Data-based study of ocean flows is further challenged by the
enormity and inaccessibility of the system, resulting in datasets that
are both too much (raw volume) and too little (sparse or incomplete).
Primitive equation-based ocean models are also complex and
unwieldy and are, thus, shunned for certain tasks in favor of simpler
reduced models. Quasi-geostrophy is an example of a reduced model

which, despite being highly simplified, is still a partial differential equa-
tion (PDE)-based model that exhibits rich dynamics including low-
frequency variability, multiple equilibria, and parametric bifurcation
to aperiodic and chaotic solutions,11–15 advancing the understanding
of key dynamics underlying the behavior of complex primitive equa-
tion ocean models and ocean observations.

A dynamical systems approach to ocean flows has led to
new tools and useful diagnostics, which has improved our under-
standing of transport. However, the determination of Lagrangian
coherent structures (LCS)2,16 through the finite-time Lyapunov expo-
nent (FTLE) field and other geometric and probabilistic methods17

is also computationally demanding and seems to offer limited capac-
ity to make detailed flow predictions. Related approaches have
exploited modal decomposition,18 both as a modeling tool19 and
more broadly as a tool to analyze data for purposes of control,
modeling, or prediction.20,21 The double-gyre (DG) streamfunction
(toy) model is the foundation of much of that work, becoming a
workhorse and standard example within the dynamics community.22

Furthermore, Aref’s work23 has highlighted the sensitive nature of
particle trajectories and their chaotic nature even in very simple
time-dependent flows.

Phys. Fluids 34, 116604 (2022); doi: 10.1063/5.0119061 34, 116604-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0119061
https://doi.org/10.1063/5.0119061
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0119061
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0119061&domain=pdf&date_stamp=2022-11-09
https://orcid.org/0000-0002-4806-8966
https://orcid.org/0000-0003-0694-9981
https://orcid.org/0000-0002-8075-1271
mailto:philip.yecko@cooper.edu
https://doi.org/10.1063/5.0119061
https://scitation.org/journal/phf


Machine learning (ML) provides alternate, independent insights
into dynamical systems and into fluid dynamics,24–29 thanks to its abil-
ity to uncover patterns in large datasets. Machine learning derives
models from data through optimization but often requires a large
amount of data to achieve good results. Fortunately, many fluid
dynamical problems, including large scale geophysical flows, offer a
wealth of experimental or simulation data.

Reservoir computing (RC)30 is an implementation of a recurrent
neural network (RNN) that avoids several drawbacks of RNNs, such
as their high computational cost and tendency to overfit. This is
achieved in part by learning only on output weights,31–33 allowing the
hidden layer to act as a reservoir and capture features of the history of
inputs. The echo state network (ESN) variety of RC that we use is
described in more detail in Sec. II.

RC is noteworthy for its forecasting capability for complex sys-
tems.34 Recently, an RC approach was trained on data from the intrin-
sically aperiodic Lorenz dynamical system,35 and both reproduced
characteristics of its attractor and made predictions of future states.
The same authors35,36 extended this approach to the Kuramoto–
Sivashinsky (KS) equation, a one-dimensional, nonlinear PDE model
of reaction–diffusion and fluid phenomena, and were similarly able to
predict future spatiotemporal states. It follows naturally that RC can
be applied to a range of geophysical fluid dynamics (GFD) problems.
This study adopts as its focus a pair of reduced ocean models: the
double-gyre and the barotropic QG models, which are closely related
but with significant distinctions.

On the one hand, QG models and their solutions have provided
researchers insights into the key dynamics of the global ocean circula-
tion, the so-called Sverdrup transport, in terms of the vorticity balance
between dissipation and wind stress driving (Ekman pumping) in a
closed basin.37 Using only three non-dimensional control parameters,
the barotropic QGmodel can describe both the nature and the complex
variability of the prominent Western boundary currents seen in the
world’s oceans; the history of this research has been reviewed in the
text by Pedlosky38 and in several well-known works.39–41 QG, thus,
allows direct examination of the role of nonlinearity, in terms of the so-
called inertial or Fofonoff mode, within the Munk model, features that
are generally obscured in complex physical equation simulations and
the actual ocean. As a result, QG continues to be a powerful tool in
emergent applications of ocean and climate research, ranging from the-
ories for the thermocline,42,43 to interannual variability,44,45 to the sepa-
ration of the western boundary current (i.e., gulf stream),41,46,47 while
more recently, QGmodels have been applied to the Atlantic meridional
overturning circulation (AMOC)48 and as a framework for data assimi-
lation49 and for turbulence model closure.50

Given their excellent dynamical capabilities, QG models have
served as a foundation for the diagnosis and development of sensing
strategies and control2 and other applications based on or coupled
to ocean transport, such as pollutant dispersal. In such applications,
even the highly reduced barotropic QG model, a PDE, is sometimes
too computationally expensive. As a result, many researchers have
adopted the double-gyre stream function51 model as a useful proxy for
a full QG model, which, nevertheless, mimics its key kinematic trans-
port features. Like QG, DG is typically driven by time-dependent forc-
ing that can represent wind stress, but unlike QG, DG does not exhibit
intrinsic variability; indeed, DG is a direct prescription of a flow
stream function.

Even in DG-based studies of transport, researchers have faced
challenges in predicting trajectories of tracer particles and in under-
standing key transport features. This is not surprising, as the pioneer-
ing work of Aref23 has shown that tracer trajectories are often chaotic
even in the simplest two-dimensional time-dependent flows, such as a
Stokes flow. Tools such as modal analysis, while powerful and useful,
were not ideally suited to the above challenges. With the work of
Shadden et al.,22 the application of Lagrangian coherent structures
(LCS) and the finite-time Lyapunov exponent (FTLE) the LCS is based
on were shown to give greater insight into transport features and tra-
jectories of DG models. Indeed, in this study, we adopt and leverage
the combination of modal analysis, FTLE, and particle trajectories to
assess the efficacy of machine learning (ML) models to capture the
complex nature of transport in both DG and QG flows, much as the
attractor can be used to compare chaotic dynamical systems.

The approach presented in this study applies reservoir computing
to data produced by: (i) a double-gyre stream function model with
time-variable forcing and (ii) a single-layer (barotropic) QG basin
model. Each model is formulated as a discrete, time-dependent
dynamical system, which is used to produce stream function time-
series data that provide the input to a reservoir computing model. For
each system, we use RC to find a low-dimensional model of the sys-
tem, and we compare the predictions of the RC model to the original
system using several relevant testing frameworks, including global
stream function and ideal particle trajectories.

The quality of the predictions is also examined as a function of
RC model parameters and by comparing the FTLE and proper orthog-
onal decomposition (POD) found using the RC model with those
found using the original model. Taken together, modal decomposition,
FTLE, and trajectories characterize a particular model flow, and we
use these to assess how well our RC models capture the generic
dynamical and transport features of the QG and DG. We find that RC
models trained with relatively little sparse data very effectively repro-
duce the above quantities and allow accurate forecasting over signifi-
cant timescales.

It is worth noting that while this study relies entirely on synthetic
data from various QG models, its results bear directly on the capability
of RC models to work with any form of flow data in the quasi-
geostrophic regime, whether from observations or more complex
models.

II. RESERVOIR COMPUTING

As mentioned in Sec. I, echo state networks belong to a particular
family of recurrent neural networks called reservoir computing, where
the main idea is to drive a fixed, high-dimensional, random, sparse
network, designated as the reservoir, with an input signal to produce a
high-dimensional “echo” response, which is then used as a non-
orthogonal signal basis to reconstruct the desired output, generally as
a linear combination. In this work, we follow the standard implemen-
tation details.30

The main idea of reservoir computing is to map a set of sequen-
tial data uðtÞ of dimension ninput into a high-dimensional reservoir
state vector rðtÞ of dimension nres primarily by multiplying uðtÞ with a
nres � ninput matrix denoted asWin [see Eq. (1a)]. A linear predictor is
then applied on the two vectors to solve for an output yðtÞ of dimen-
sion noutput . Here, t ¼ 1;…; strain is the set of discrete time points with
strain denoting the total number of data points in the training dataset.
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In this case, the training procedure is formulated based on a dynamical
system; the desired output yðtÞ ¼ uðt þ 1Þ and ninput ¼ noutput . The
training criterion depends solely on the hidden units, or state vector
rðtÞ, and the output targets yðtÞ. As a result, this can be easily designed
to be a convex optimization problem for linear predictors. The trade-
off, however, is the problem of developing an effective representation
of histories in the state vector rðtÞ.

The state dynamics of the reservoir during the training phase is
governed by the following system of equations:

rðt þ 1Þ ¼ f WrðtÞ þWinuðt þ 1Þ þ �ðtÞ
� �

; (1a)

ŷðt þ 1Þ ¼Wout uðt þ 1Þ; rðt þ 1Þ½ �; (1b)

where rðtÞ is the reservoir state vector, f is generally a sigmoid function
(e.g., logistic, or tanh function), W is the nres � nres reservoir weight
matrix, Win is the nres � ninput input weight matrix, uðtÞ is the input
signal, ŷðtÞ is the estimated value of the desired output yðtÞ, which is
nothing more than the observed data, Wout is a noutput � ðninput
þnresÞ-dimensional matrix of output weights to be applied as a final
transformation on the extended system state, which consists of a con-
catenation of uðt þ 1Þ and rðt þ 1Þ, and �ðtÞ is an nres-dimensional
noise vector. Note that the reservoir is driven by both the input
sequence uðt þ 1Þ and the previous state rðtÞ.

The goal of the training phase is to optimize the output layer
weight matrix Wout, such that the distance between ŷðtÞ and the
expected outputs yðtÞ is a minimum in the least squares sense, where
ŷðtÞ is the estimated value of yðtÞ. We implement a linear regression
with a regularization constraint b acting on the output weights; this
scheme is known as ridge regression. For the set of training data, the
optimalWout

opt is given by

Wout
opt ¼ argmin

Wout

XT
t¼0

ŷðtÞ � yðtÞð Þ2 þ bjjWoutjj22; (2)

where jj � jj2 denotes the L2 norm. This expression can be approxi-
mated using gradient descent or directly calculated as

Wout
opt ¼ Rþ b Ið Þ�1P; (3)

where R is the correlation matrix of the extended system states, P is
the cross correlation matrix of the extended system states and the
desired outputs, and I is the identity matrix.

The main difference between this training procedure and tradi-
tional recurrent network approaches, as mentioned earlier, is that the
weights on most of the network are randomly initialized and remain
fixed throughout the procedure. The weight matrices W and Win are
both specified based on the recommendations of established
research.30 In particular, Win is specified as a random matrix without
any additional constraint, whereas W is specified as a random matrix
with the additional constraint that its spectral radius (the maximum of
the absolute value of the eigenvalues) is such that the system is brought
to the edge of stability, where studied ESNs typically achieve maxi-
mum computational capability. To satisfy the constraint, it is usually
sufficient to sample a range of spectral radii around unity, with prefer-
ence given to higher values as the dynamics of the training data
become more chaotic.52 Note that the only weights that are changed
are the matrixWout, which is ultimately determined through the train-
ing process to an optimal Wout

opt through Eqs. (2) or (3). This is one of

the primary advantages of this type of a neural network structure and
a training approach.

The prediction phase is different from the training phase in that
the system is now autonomous and does not use uðtÞ as an input.
Rather, the reservoir dynamics is governed by the single equation,

rðt þ 1Þ ¼ f WrðtÞ þWinWout
opt uðtÞ; rðtÞ½ � þ �ðtÞ

� �
: (4)

Equation (4) is the same as Eq. (1a), except that uðt þ 1Þ is replaced
by the output feedback loop asWout

opt½uðtÞ; rðtÞ�. The resultant reservoir
states rðtÞ for all t > strain can always be projected to the input data
space as

ŷðtÞ ¼Wout
opt uðtÞ; rðtÞ½ �: (5)

Figure 1 illustrates the training and prediction phases of the ESN
framework. The resultant autonomous reservoir system has been
found to successfully replicate different aspects of many chaotic
dynamical systems, such as the Lorenz system.35 Previous studies on
these methods and their application to chaotic dynamical systems
motivate the rest of the work in this study, where chaotic fluid dynam-
ical systems are applied as inputs to the ESN framework.

III. STREAM FUNCTION DATA AND MODELING

For an open set D � R2, that is the domain of interest, we define
the stream function wðx; tÞ to be a time-dependent scalar field on D,
where x 2 D. While analytic solutions of the stream function and
velocity fields may be defined in some cases, many real world prob-
lems do not have a theoretical form. Instead, stream functions are usu-
ally presented as discrete snapshots over a finite-time period and,
along with velocity fields, are interpolated from the discrete grid of
points X0 � D for all points x 62 X0 to be used for particle trajectory
integration. In this article, while the analytic stream function for the
double-gyre flow is known, the methods are applied to the data as if
the analytic solution is not known. In contrast, the analytic solutions
of the more complicated QG flow are not known, and, thus, we have
no choice but to apply our methodology to the data. Therefore, in this
study, the stream function wðx; tÞ may refer to either the analytic
form or the interpolated data. Although the two approaches are gener-
ally interchangeable, the interpolated version is of greater practical
value.

We can formulate the stream function as a dynamical system and
apply it as input to our reservoir computing framework; we frame the
stream function as the feedback,

wðx; tiþ1Þ ¼F wðx; tiÞð Þ; (6)

where F : D 7!D is a flow map of the stream function and ti is the
time index. The stream function can be used as a time series of s snap-
shots, where each snapshot is in the domain D and i ¼ 1;…; s. By
approximating the flow mapF using machine learning, we can model
the stream function and its temporal evolution and use the estimated
model to calculate velocity fields and particle trajectories.

Stream function data are extracted for s time steps at each grid
point in X0. In our experiment, we are using a rectangular grid (though
any grid scheme can be used); X0 is am� n rectangular matrix, so each
snapshot in time is anm� nmatrix, and the entire data matrix contain-
ing all snapshots across s time steps is of sizem� n� s. Recall that the
input to the ESN, i.e., uðtÞ in Sec. II, is a data vector of arbitrary size.
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In order to use the data matrix in the ESN framework, we convert the
m� n� s data matrix to the (mn)-dimensional vector uðtÞ for each of
the s time steps.

In this work, we consider both the actual stream function wðx; tÞ
(but sampled as though it was derived from an experiment) and the
estimated stream function ŵðx; tÞ modeled from training data as out-
put from the ESN framework. A visualization of the data manipulation
is shown in Fig. 2.

A. Training, testing, and prediction

The goal is to learn the flow map F. Using the ESN framework,
stream function time series data are input into the reservoir, which
expands the dimensionality of the data via a series of matrix multipli-
cations and nonlinear operations [recall Eq. (1a) and the description
of reservoir computing in Sec. II]. The transformed data are referred
to as the reservoir states.

A portion of the stream function data is designated as the train-
ing data. Given our complete data matrix is of dimension ðmnÞ � s,
we can remove a portion of size ðmnÞ � strain where strain < s. To
actually use these data for training purposes, the stream function input
data are paired to itself using a 1 : 1 mapping through ti ! tiþ1, where
ti < strain. We will then have a mapping of wðx; tiÞ 7!wðx; tiþ1Þ. An
unchanging dimension-reducing matrix is used to project the reservoir
states to the input dimension, forming the output data. A model is fit-
ted based on a linear regression of the output data on actual data. A
visualization of the training is shown in Fig. 3.

Once the model is fitted on the designated training data, we allow
the model to feedback its outputs, ŵðx; tiþ1Þ as inputs. We can

compare these learned stream function fields against the actual stream
function fields at every time index to evaluate the model.

IV. IMPLEMENTATION AND RESULTS

Large-scale ocean circulation is driven primarily by winds and
the Earth’s rotation, forming characteristic gyres spanning irregularly
shaped basins. Dissipation together with the effective variation of plan-
etary rotation with latitude lead to an intensification of these currents
along a western boundary.37

To generate flow data, we adopt two well-known ocean models: a
double-gyre flow and a quasi-geostrophic flow, both of which are used
extensively as a foundation for the study of wind-driven ocean circula-
tion. Stream function data, discretized on a spatial grid and in time,
form the framework for modeling and forecasting. The same learning
procedures are applied to DG and QG flows, and the results, predic-
tions of stream function evolution and passive tracer transport, are
evaluated by comparison to the actual solutions from the models. To
further validate the predictions of our RC results, we compare both
FTLE and modal decomposition (POD) of the actual and predicted
systems.

A. Double-gyre model

We first consider the well-known double-gyre stream function
model2 to demonstrate our methodology. The DG flow is not the solu-
tion of any approximate ocean model; rather, it is a prescriptive for-
mula for a flow’s stream function with features that mimic ocean
gyres, first used by Smith and Spiegel53 to examine tracer transport
and later widely adopted, and adapted, as a useful model of ocean
basin flow. The DG stream function adopted here is prescribed as

FIG. 1. Block diagrams representing the flow and transformation of data through (a) the training phase and (b) the testing and prediction phase of the ESN. The output layer
weight matrixWout changes between (a) and (b).
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wðx; y; tÞ ¼ A sin ðpf ðx; tÞÞ sin ðpyÞ; (7)

where

f ðx; tÞ ¼ aðtÞx2 þ bðtÞx;
aðtÞ ¼ e sin ðxtÞ;

bðtÞ ¼ 1� 2e sin ðxtÞ
(8)

and is defined over the rectangular domain ½0; 1� � ½0; 2�. Although
the DG model is a “toy” model, it has the advantage of providing

direct flow data at any spatial or temporal resolution without the need
to solve a PDE.22

An example of the DG stream function time evolution is shown
in the bottom of Fig. 4. The quadratic function f(x, t) causes periodic
oscillations across the domain and is meant to capture the wind-stress
driving effect. The term “double-gyre” comes from the visually appar-
ent pair of vortices that oscillate across the domain. The terms e and x
in Eq. (8) are parameters, which, respectively, determine the magni-
tude and frequency of the oscillations. Setting x ¼ 0 would result in a
double-gyre system with no oscillations and a pair of vortices centered

FIG. 3. The stream function input data for training is first paired through the time index ti 7! tiþ1, creating a mapping for the training dataset, wðx; tiÞ 7!wðx; tiþ1Þ.

FIG. 2. Notation for a snapshot of the stream function field at a specific time t, and a time series of stream function fields that begins at the initial time t0.
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at (0.5, 0.5) and (0.5, 1.5). In this study, we set e ¼ 0:3 and x ¼ p=5.
Importantly, the DG system has a complicated basin boundary struc-
ture in which the basins of attraction are intermingled, a signature of
the existence of a fractal basin boundary. Because of this intermingling
of the basin boundaries, one can expect a sensitive dependence on ini-
tial conditions in the particle trajectories.2

We can also consider the velocity field associated with this stream
function. For any stream function w, the velocity field is given by its
standard definition,

v ¼ u; vð Þ ¼
@w
@y

;� @w
@x

� �
(9)

and for the double-gyre flow, it takes the following form:

u ¼ �pA sin ðpf ðxÞÞ cos ðpyÞ;

v ¼ pA cos ðpf ðxÞÞ sin ðpyÞ df
dx
:

(10)

Although the DG flow does have a closed form solution for its stream
function and velocity field, this is often not the case. In fact, as we shall
soon see, more intricate and more realistic flow models of ocean
dynamics generally do not have a closed form solution for the velocity
field. As a result, while we do have the closed form solution to the
velocity field for the double-gyre flow model, which provides a useful
standard for evaluation, we will proceed as though we do not.

B. Quasi-geostrophic model

Quasi-geostrophy in its basic form represents a solution of the
Navier–Stokes-based primitive equations of ocean circulation found
using a series in powers of a small parameter, e, identified as the
Rossby number. Steady, geostrophic, flow is recovered as the leading
order solution, representing dominant rotation (small e). By express-
ing the next order solution in terms of leading order quantities, the
QG model is found. Details of the derivation of QG and some of its
variants can be found in Ref. 37.

The QG model is, thus, significantly more realistic but also more
computationally demanding compared to the DG model. The QG
model used in this study is a barotropic, single-layer QG model with a
lateral (viscous, Munk) and bottom (drag, Stommel) friction that
exhibits solutions that capture important geophysical fluid dynamics
(GFD) features, including western intensification.38 The QG model
can be expressed as

@r2w
@t
þ eJðw;r2wÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Inertial

þ @w
@x
¼ lr2w|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stommel

þ kr4w

zfflffl}|fflffl{Munk

þwE; (11)

where J is the Jacobian operator, l is the Stommel friction, k is the
Munk friction, and wE is the driving due to wind. Non-dimensional
parameters, named Stommel ðdSÞ, Munk ðdMÞ, and Inertial ðdIÞ, are
formulated with respect to the relative lengthscales of three important
boundary layers.38 The corresponding non-dimensional parameters,
l; k; and e, capture the relative importance of bottom friction, lateral
diffusion, and the nonlinearity; these parameters and the various QG
models are defined in Appendix A. In the following, we note that only
the pure Stommel case, defined by dM ¼ dI ¼ 0, with dissipation in
the form of frictional drag, has a linear closed-form solution.
Nonlinear cases, having dI 6¼ 0, and viscous dissipation, dS 6¼ 0, are
more commonly applied to specific problems38 in ocean dynamics
and, thus, of more interest. Such models are also expected to be more
challenging to capture using machine learning. We focus primarily on
modeling the Highly Nonlinear variation of the QG model since it
encompasses all aspects of the QGmodel formulation. Of the four var-
iations (Stommel, Munk, inertial, highly nonlinear, defined in
Appendix A), the Highly Nonlinear version is the most complex in its
behavior and might be expected to be the most difficult variation to
model.45,54,55 A sample of the QG stream function time evolution is
shown in the bottom of Fig. 5. We note that all QG model solutions
used in this study were verified, by monitoring kinetic energy, to be
equilibrated in the sense that transients had effectively vanished.

FIG. 4. The (top) actual and (bottom) estimated double-gyre stream function field, starting from some time step ti > strain ¼ 2000 and increasing from left to right in intervals
of ten time steps. The spectral radius is 2.3, the reservoir size is 5000 nodes, and the domain is ½0; 1� � ½0; 2�.
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C. Evaluation of the learned models

We begin evaluation of the learned models by analyzing the dif-
ferences between the stream function fields. We then evaluate the dif-
ferences in particle behavior within the actual and estimated stream
function fields. Finite-time Lyapunov exponent (FTLE) fields are then
the natural extension to the Lagrangian (particle trajectory) approach
to understanding the difference in the flows, as we can essentially
understand FTLE field analysis to be both an ensemble analysis of par-
ticle trajectories as well as a general structural analysis of the flow.
Finally, modal structure decomposition comparisons between the
actual and estimated stream function fields allow for some under-
standing of the dimensionality, or complexity, of the estimated field
with respect to the actual field. In Secs. IVC1–IVC4, each of these
techniques will be applied.

1. Stream function comparison

For both DG and QG models, we will analyze the difference
between the estimated and actual stream function fields. In this sec-
tion, we will only discuss the simpler DG model and the Highly
Nonlinear variation of the QG model; however, in Appendix B, we
include results for the other variations of the QG model. For our pur-
poses, the Highly Nonlinear variation of the QG model is most rele-
vant as it is the most difficult to model and solve numerically.

Qualitatively, Figs. 4 and 5 show that the estimated and actual
stream functions exhibit almost identical behavior. The absolute error
metrics between the actual and estimated stream function fields vary
with the different hyperparameter tunings (training size, reservoir size,
and spectral radius) used during the training of the ESN model.
Figures 6 and 7 show the gradual increase in the average absolute error
between the estimated and actual stream functions for various training
sizes. While the QGmodel examined here represents the most dynam-
ically complex case, a more complete picture of the QG stream

FIG. 5. The (top) actual and (bottom) estimated QG stream function field (highly nonlinear version), starting from some time step ti > strain ¼ 100 and increasing from left to
right in intervals of 10 time steps. The spectral radius is 1.0, the reservoir size is 4000 nodes, and the domain is ½0; 1� � ½0; 2�.

FIG. 6. Average error of estimated DG stream function against actual DG stream
function evolved over 10 000 time steps starting from strain, with varying training
lengths. The error bars represent the standard deviation of error.

FIG. 7. Average error of estimated QG stream function against actual QG stream
function (highly nonlinear version) evolved over 10 000 time steps starting from
strain, with varying training lengths. The error bars represent the standard deviation
of error.
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function can be found in Appendix B, where additional model param-
eters are considered, including examples in the Stommel and Munk
regimes. Other hyperparameter dependencies are explored in
Appendix C.

Training size is specifically highlighted here because total training
computation time has a quadratic complexity with respect to training
size. Notably, the QG model only requires 1 “period” of training data,
approximately 70 time steps, for reasonable results. A model with
fewer than 70 time steps fails to replicate the actual stream function;
this makes sense as the model never “sees” all the ways the stream
function evolves within an entire period.

2. Particle trajectories

While a stream function is itself useful and is closely related to
sea surface height (SSH) data, a major area of interest and application
is the study of transport; in particular, the dynamics of particles placed
within the field. Particle trajectories in time-dependent flows are com-
plex and not generally predictable, even in simple flow fields, as has
been appreciated since the early studies of chaotic advection.23,53 In
this study, we adopt trajectories and the related quantity of FTLE
fields as a way to validate the fidelity of our RC model. Let the open set
D � R2 be the domain of interest, and the stream function wðxðtÞ; tÞ
be a time-dependent scalar field on D. Particle trajectories can be cal-
culated for each point xðt0Þ 2 D initialized at t0, as we consider a flow
to consist only of incompressible fluid particles. Each particle’s trajec-
tory is governed by a flow map /t0þDt

t0 : D 7!D, where

x 7!/t0þDt
t0 ðxÞ (12)

for some time interval Dt. For the flows studied in this work, the flow
map /t0þDt

t0 is directly dependent on the smooth velocity field vðx; tÞ
on D, where x is a two-dimensional position vector (x, y) and where
Eq. (12) is integrated forward in time using a fourth-order Runge-
Kutta numerical method.56

Measuring the accuracy of the model can be approached in sev-
eral ways. In practical fields of work and engineering, stream functions
are useful for particle trajectory tracking. For this, it is important to
remember that the underlying particle dynamics is chaotic and inher-
ently unpredictable by nature, so any attempt to evaluate estimated
models should be regarded with respect to the level of chaos in the
system.

To account for the inherent chaotic nature of the particle dynam-
ics, estimated particle trajectory deviations are compared to initially
perturbed actual particle trajectories over time. Let an arbitrary particle
trajectory has an initial condition x0 2 D, so that xðt; x0Þ 2 R2�s. As
the evolution of xðt; x0Þ depends on the governing stream function,
there are two unique particle trajectories defined for each unique initial
condition: one defined for an actual stream function and one defined
for an estimated stream function. For each initial condition, the two
defined particle trajectories are compared over time.

As previously mentioned, it is also important to acknowledge the
inherent chaotic nature of the particle dynamics; the estimated particle
trajectory’s deviation is compared to an initially perturbed actual parti-
cle trajectory’s deviation over time, which can be loosely thought of as
an upper bound on the predictability of the system’s particle trajecto-
ries. In Figs. 8 (DG) and 10 (QG), the deviation from the true particle
trajectory governed by the actual stream function is compared to

(1) a particle trajectory governed by the actual stream function
with slightly perturbed initial conditions, and

(2) a particle trajectory governed by the estimated stream function
with the same initial conditions.

While these trajectories are not necessarily representative of all
initial conditions, they do present some insight on how the particle tra-
jectories based on the learned model track the actual particle trajecto-
ries with respect to the inherent chaotic nature of the dynamics.

Figures 8 and 10 show the trajectories found using perturbed ini-
tial conditions (left) and found using the actual and learned models
(right) for the DG and QG models, respectively. The perturbed trajec-
tory and the estimated particle trajectory both begin to deviate
between 500 and 1000 time steps. In other words, trajectories governed
by the estimated stream function are approximately equivalent to tra-
jectories governed by the actual stream function with an initial devia-
tion of 10�3 for DG (Fig. 9) and 10�2 for QG (Fig. 11).

It is worth noting in Fig. 10 that the dramatically different final
position of the two trajectories is not caused by the actual and esti-
mated streamfunctions being dramatically different, as, in fact, the two
streamfunctions are quite close to one another as seen in Fig. 5.
Rather, this particular choice of initial condition is such that the par-
ticles start essentially on top of an LCS, which serves as a division of
the phase space dynamics. Even the small discrepancy between the
actual and estimated streamfunction has led to the initial condition
lying on different sides of the LCS (with respect to the actual and esti-
mated model), and, thus, over time, the trajectories end up in different
basins of attraction. If the initial condition was positioned on the same
side of the LCS (for the actual and estimated models), their final

FIG. 8. Particle position plots for the first 1000 time steps after strain based on (left)
actual and (right) estimated DG stream functions. The left image shows two particle
trajectories governed by the same stream function but with initial conditions which
differ by an order of magnitude 10�3 relative to the grid resolution of the stream
function, which is 80� 160. The right image shows two trajectories with the same
initial conditions but which are governed by different stream functions, with the solid
trajectory corresponding to the estimated stream function and the dashed trajectory
corresponding to the actual stream function. The dashed trajectories in both the left
and right images are the same.
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positions would be close to one another. As with any deterministic
flow, whether or not two trajectories diverge and end up in different
basins is a matter of where they start in relation to the LCS.

To obtain a general sense of how particle trajectories deviate with
respect to any initial condition in the domain, an average deviation is
calculated over time using a large sample of initial conditions. For sim-
plicity, deviation is quantified with the Euclidean norm between parti-
cle positions at corresponding time steps. As shown in Figs. 9 (DG)
and 11 (QG), the particle trajectories associated with the estimated
stream function deviate from the particle trajectories associated with
the actual stream function at about the same time as trajectories asso-
ciated with the actual stream function but with perturbed initial condi-
tions. Note that different initial perturbation amplitudes, namely, 10�3

and 10�2 for the DG and QG models, respectively, were used in order
to match the trajectory deviations for the two types of flow.

3. Finite-time Lyapunov exponent field

The computation of finite-time Lyapunov exponents is often
used to find coherent structures in fluid flows.22,57–59 The FTLE pro-
vides a measure of how sensitively the system’s future behavior
depends on its current state.

We consider a velocity field v : D� I ! D, with D � R2 that is
defined over a time interval I ¼ ½ti; tf �, and the system of equations

_xðt; ti; x0Þ ¼ vðxðt; ti; x0Þ; tÞ; (13a)

xðti; ti; x0Þ ¼ x0; (13b)

where x; x0 2 R2 and t 2 I. This dynamical system has quantities
known as Lyapunov exponents that measure the growth rates of the
linearized dynamics about the trajectory of the system. To find the
finite-time Lyapunov exponents (FTLE), the Lyapunov exponents are
computed on a restricted finite time interval.

To compute FTLE values, we define the domain of interest D as
an evenly spaced grid of two-dimensional points with initial position
x0 defined at the grid points. Then, all points are numerically inte-
grated using Eqs. (13a) and (13b). The flow map / determines the
advection of the initial points as follows:22,57–59

/tiþT
ti : x0 ! /tiþT

ti ðx0Þ ¼ xðti þ T; ti; x0Þ: (14)

Then, the FTLE can be defined as

rðx; ti þ T;TÞ ¼ 1
jTj ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðDÞ

p
; (15)

where kmaxðDÞ is the maximum eigenvalue of the right Cauchy–Green
deformation tensor D, which is given as

Dðx; ti þ T;TÞ ¼
d/tiþT

ti ðxðtÞÞ
dxðtÞ

 !�
d/tiþT

ti ðxðtÞÞ
dxðtÞ

 !
(16)

with � denoting the adjoint.
For a given x 2 R2 at initial time ti, Eq. (15) gives the maximum

finite-time Lyapunov exponent for some finite integration time T (for-
ward or backward) and provides a measure of the sensitivity of a

FIG. 10. Particle position plots based on (left) actual and (right) estimated QG
stream functions (highly nonlinear version). The left image shows two particle tra-
jectories governed by the same stream function but with initial conditions which dif-
fer by an order of magnitude 10�2 relative to the grid resolution of the stream
function, which is 64� 128. The right image shows two trajectories with the same
initial conditions but which are governed by different stream functions, with the solid
trajectory corresponding to the estimated stream function and the dashed trajectory
corresponding to the actual stream function. The dashed trajectories in both the left
and right images are the same.

FIG. 9. Average deviation for the DG flow of 10 000 particle trajectories from the
true particle trajectory for (solid) trajectories governed by the actual stream function
with perturbed initial conditions, and (dashed) trajectories governed by the esti-
mated stream function with the same initial conditions. The initial conditions differ
by an order of magnitude 10�3 relative to the grid resolution of the stream function,
which is 80� 160.

FIG. 11. Average deviation for the Highly Nonlinear QG flow of 10 000 particle tra-
jectories from the true particle trajectory for (solid) trajectories governed by the
actual stream function with perturbed initial conditions, and (dashed) trajectories
governed by the estimated stream function with the same initial conditions. The ini-
tial conditions differ by an order of magnitude 10�2 relative to the grid resolution of
the stream function, which is 80� 160.
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trajectory to small perturbations. The FTLE field given by rðx; ti;TÞ can
be shown to exhibit ridges of local maxima in phase space. The ridges of
the field indicate the location of attracting (backward time FTLE field)
and repelling (forward time FTLE field) structures. In two-dimensional
space, the ridge is a curve which locally maximizes the FTLE field, so that
transverse to the ridge one finds the FTLE to be a local maximum.2,22

Given the two-dimensional grid of points spanning the domain
of the flow field, one can compute ½xijðtÞ; yijðtÞ� and ½xijðt þ TÞ;
yijðt þ TÞ�, where ðxijðtÞ; yijðtÞÞ denotes the ði; jÞth points in the com-
putational grid, and ½xijðt þ TÞ; yijðt þ TÞ� denotes the corresponding
set of points after they have been advected by the flow for integration
time T. The spatial gradient of the flow map is approximated as

FIG. 12. FTLE fields calculated using particle trajectories governed by (top) actual and (bottom) estimated double-gyre stream functions within 100 time steps after the start of
the prediction phase.

FIG. 13. FTLE fields calculated using particle trajectories governed by (top) actual and (bottom) estimated QG stream functions (highly nonlinear version) within 100 time steps
after the start of the prediction phase.
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d/tþT
t

dx
�

xiþ1;jðtþTÞ�xi�1;jðtþTÞ
xiþ1;jðtÞ�xi�1;jðtÞ

xi;jþ1ðtþTÞ�xi;j�1ðtþTÞ
yi;jþ1ðtÞ�yi;j�1ðtÞ

yiþ1;jðtþTÞ� yi�1;jðtþTÞ
xiþ1;jðtÞ�xi�1;jðtÞ

yi;jþ1ðtþTÞ�yi;j�1ðtþTÞ
yi;jþ1ðtÞ�yi;j�1ðtÞ

0
BBBB@

1
CCCCA

using central finite differences.
The computations of the FTLE field for the DG and QG flows

were performed using a fourth-order Runge-Kutta algorithm.
However, the final integration time T differed between the two prob-
lems since particles in the DG flow never leave the domain D, while
particles in the QG flow will exit the domain D after some period of
time. To resolve this issue, the integration time must be limited by
some upper bound, which was chosen based on observation of the
FTLE and particle fields at various integration times.

Figures 12 and 13 show the forward-time FTLE fields computed
using the actual and estimated stream functions fields for the DG and
QGmodels, respectively. The FTLE field based on the estimated, inter-
polated velocity field qualitatively agrees well with the actual FTLE
field. The FTLE fields of the estimated and actual velocity fields for the
variations of the QG flows agree qualitatively as well. As the flows
becomemore nonlinear (e.g., Fig. 13), it becomes more difficult to pin-
point the coherent structures. Nevertheless, the same phenomenon is
seen in the estimated FTLE field as compared with the actual FTLE
field. FTLE fields for Stommel, Munk, and Inertial QG models are
shown in Appendix B and can be seen to have more structure than
DG FTLE fields, yet have fewer features than the Highly Nonlinear
QG case.

4. Modal structure decomposition

We use the proper orthogonal decomposition (POD) method60

to generate prominent modal structures (basis functions) and quantify
the amount of information extracted from both the estimated and
actual stream function data.61,62 Again, we are observing the scalar
stream function field wðX0; tÞ, where X0 � D are the grid points uni-
formly sampled in the domain of interest D � R2. The POD method
serves to decompose wðX0; tÞ as a number of optimal (in the L2 sense)
orthogonal basis functions /iðX0Þ where i 	 n, so that the original
stream function field can be reconstructed as the linear combination,

wðX0; tÞ � �wðX0Þ ¼
Xn
i¼1

aiðtÞ/iðX0Þ; (17)

where �wðX0Þ is the temporal mean of the stream function field, ai is
the temporal coefficient, and the left hand side of Eq. (17) provides the
fluctuations from the mean field.

Given the m� n-dimensional X0, then one can construct the
data matrix X 2 Rmn�ŝ , where ŝ is the total number of time steps in
the prediction phase, by concatenating the flattened snapshot vectors
wðX0; tÞ. The optimal orthogonal basis functions /i are determined
by solving the eigenproblem,

R/i ¼ ki/i; /i 2 Rn; k1 
 k2 
… 
 kn 
 0; (18)

where R is the covariance matrix XXT 2 Rn�n (where T denotes
transpose). The largest eigenvalues ki correspond to the eigenvectors
/i with the most contribution to reconstructing the original stream

function field. The results of this decomposition can be used as a visual
evaluation of the estimated stream function fields. By decomposing
both the actual and estimated stream function fields to their respective
optimal basis functions, one can analyze the differences between the
different modal structures.

As shown in Fig. 14, the modal structures for the DG model are
ordered by variance contribution (i.e., eigenvalue magnitude). The
agreement between the actual and estimated modal structures is excel-
lent. Moreover, the first two modes contribute almost all of the vari-
ance in both cases. Similar observations can be made for the highly
nonlinear variant of the QG model, as shown in Fig. 15. The modal
structure of the Stommel, Munk, and inertial cases exhibits a similar
close agreement and need not be shown. While all the QG cases
include some degree of nonlinearity, two or three modes are domi-
nant, as we expect from this single-layer QG model.37 These POD
results reflect the fact that the models used here, despite nonlinearity,
involve a basic two attractor basin with spatially and temporally peri-
odic driving. The efficacy of POD to capture the dynamics for such
systems is expected and now well-known. The trajectories and the
FTLE portraits that can be thought of as capturing families of

FIG. 14. POD modes for the (top) actual and (bottom) estimated DG stream func-
tion. The percentage above each modal structure is the proportion of variance con-
tributed by each mode.
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trajectories are more challenging to model because they sample the frac-
tal basin boundaries created by the time-dependent forcing and are, thus,
themselves, chaotic. This dichotomy between the simplicity of the flow
and the complexity of its trajectories is the central idea first described by
Aref23 for a time-dependent, two-dimensional Stokes flow.

V. CONCLUSION

This work explains the methodology, development, and evaluation
of a machine learning approach to modeling and prediction of geophys-
ical flows. Reservoir computing’s relevance to dynamical systems is
introduced, and RC is applied to two well-known ocean circulation
models: the simple prescriptive double-gyre stream function model
(DG) and the more complicated quasi-geostrophic PDEmodel (QG).

The effectiveness of this reservoir computing approach to model-
ing and characterizing ocean circulation models through the stream
function is evaluated using a range of quantitative and qualitative mea-
sures, including mean stream function error, the predictability of particle
trajectories, and comparisons of FTLE and modal signatures. Reservoir
computing models formed from QG model data exhibited good predic-
tive power even in these chaotic dynamical systems described by a non-
linear PDE, and over a range of values of its control parameters.
Addressing the problems caused by limited datasets, our reservoir com-
puting approach showed that estimated flows derived from a small
amount of data are shown to agree well with the actual flows.

Of particular relevance to the work presented here is a number of
recent studies that involve machine learning in a quasi-geostrophic
context. Bolton and Zanna8 demonstrated that ML can deduce unre-
solved physical processes from sparse ocean data, which correlates
with our findings that RC models capture the dynamics of QGmodels.
While Bolton and Zanna used both QG (albeit 3D layered models)
and ocean general circulation models to produce data, their ML
approach was limited to very computationally expensive convolutional
neural networks. The effectiveness of an RC framework over other ML

options was validated recently by Chattopadhyay et al.63 for the
Lorenz96 system, both in terms of its short-term predictability and
long-term statistics. Also, for highly realistic ocean models (e.g.,
CESM2), a RC framework has been shown to perform better forecast-
ing than other approaches64 including those involving modal analysis.
Models of complex physical systems that have predictive capability
without demanding perfect data or vast computational resources, such
as the RC models explored here, have countless applications. Ocean
flows and QG models of them can serve as a framework for climate
sub-models, contaminant tracking,65 or search and recovery.66
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APPENDIX A: QUASI-GEOSTROPHIC MODEL

The quasi-geostrophic (QG) ocean circulation model used
here is derived in many standard texts. Our formulation is based on
that of Pedlosky,37,38 which can be consulted for more details.

The single layer (or barotropic) QG model can be formulated
using stream function w, or vorticity, n, where n ¼ r2w, viz

@r2w
@t
þ Jðw;r2wÞ þ b

@w
@x
¼ f0

D
wE �

f0dE
2D
r2wþ AHr4w; (A1)

where f0 is the Coriolis parameter at the central latitude of the gyre,
dE is the bottom layer thickness, b is the northward spatial deriva-
tive, D is the major layer, AH is the turbulent viscosity coefficient,
and J is the Jacobian,

J f ; gð Þ :¼ @f
@x
@g
@y
� @g
@x
@f
@y
; (A2)

FIG. 15. POD modes for the (top) actual and (bottom) estimated highly nonlinear
QG stream function. The percentage above each modal structure is the proportion
of variance contributed by each mode.
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describing the advection of relative vorticity by the motion field.
Vertical frictional forces, though weak, contribute to the flow by
stretching the planetary vorticity. We let the upper Ekman pumping
velocity be

wE ¼ w0 sin
2py
L
� wP

2py
L

sin ðxtÞ
� �

(A3)

representing a time-dependent pumping velocity, where w0 is the ampli-
tude of the Ekman pumping, wP is the amplitude of the periodic driving
perturbations, and L is the characteristic latitudinal length scale.
Applying dimensional analysis, we assume the flow is contained in a
basin of this characteristic length scale L, has characteristic horizontal
velocity scale U, and has characteristic Ekman pumping scale wE, so that

U ¼ wE
f0
bD

: (A4)

We can non-dimensionalize the stream function w, the coordinate dis-
tances x and y, and we can scale t with 1=bL, to arrive at the form

@r2w
@t
þ eJðw;r2wÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Inertial

þ @w
@x
¼ lr2w|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stommel

þ kr4w

zfflffl}|fflffl{Munk

þwE (A5)

as given in the main text, Eq. (11), where the non-dimensional
parameters

l ¼ j
bL
¼ dS

L

� �
; k ¼ AH

bL3
¼ dM

L

� �3

; e ¼ U
bL2
¼ dI

L

� �2

(A6)

are formulated with respect to the relative length scales of three impor-
tant boundary layers: ðdSÞ; ðdMÞ, and ðdIÞ, which are, respectively,
named Stommel, Munk, and inertial. Note that in the Stommel formu-
lation, j is the coefficient associated with bottom drag. The corre-
sponding non-dimensional parameters, l; k; and e, capture the relative
importance of bottom friction, lateral diffusion, and nonlinearity.

The flow is contained in a basin of characteristic scale L; hence,
each of the non-dimensional parameters is calculated based on ratios of
the boundary length scales to the characteristic length L. In general, we
associate L with the scale of the motion in the flow, though we expect
small-scale motions specifically in the western boundary current.

The Reynolds number, Re, may be defined as the ratio of the
inertial advection of relative vorticity to the diffusion of vorticity, i.e.

Re ¼ e
k
¼ dI

dM

� �2

; (A7)

where the second equality holds when the boundary layer is viscous
and has the scale of the Munk layer.38 When Re> 1, nonlinearity
influences the flow around the boundary layer, and when Re< 1,
linear viscous physics dominates the boundary layer flow.

There are no closed form solutions for QG models with the
exception of a pure Stommel case where k ¼ e ¼ 0. The Stommel,
Munk, and inertial monikers are common, and Pedlosky’s review38

can be consulted for more details. What we refer to as Highly
Nonlinear is a special case of Inertial with a relatively large amplitude
driving; gyres of this model are, thus, highly spatially asymmetric and
aperiodic. The main text contains results of our machine learning
framework for this model because it exhibits the most nonlinear and

TABLE I. Numerical values of the distinguishing parameters, including the length
scales, for each of the four QG model variations: Stommel, Munk, inertial, and highly
nonlinear; quantities described in text.

QG model variations

dS dM dI wp Re

Stommel 0.03 � � � 0.02 0.3 >1
Munk 0.04 0.03 0.02 0.2 <1
Inertial 0.04 0.03 0.05 0.2 >1
Highly nonlinear 0.01 0.03 0.05 0.5 >1

FIG. 16. The (top) actual and (bottom) estimated QG stream function field (Stommel version), with time increasing from left to right.
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irregular behavior. Results for the other variants can be found in
Appendix B. The four models and their length scale values used for
computation are outlined in Table I.

APPENDIX B: RESULTS FOR QUASI-GEOSTROPHIC
VARIATIONS

This appendix highlights the various results for the Stommel,
Munk, and inertial variations of the QG model. Figures 16, 17, and
18 compare the estimated and actual stream functions for the

Stommel, Munk, and Inertial variants, respectively. Figures 19, 20,
and 21 compare the estimated and actual FTLE fields for the
Stommel, Munk, and inertial variants, respectively.

APPENDIX C: ECHO STATE NETWORK
HYPERPARAMETER STUDIES

This appendix presents the impact of the values of the princi-
pal hyperparameters, namely, reservoir size and spectral radius, on
the error of the estimated stream function relative to the actual
stream function over time.

FIG. 17. The (top) actual and (bottom) estimated QG stream function field (Munk version), with time increasing from left to right.

FIG. 18. The (top) actual and (bottom) estimated QG stream function field (inertial version), with time increasing from left to right.
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The DG model performs reasonably well for reservoir sizes of
4000, 5000, or 6000 nodes for short training times. For longer train-
ing times, a reservoir size of 5000 nodes gives less error, but we
were not able to identify this reservoir size dependence.

Nevertheless, the stream function error remains small, 1%–2%, at
all reservoir sizes (Fig. 22). The QG model is found to perform
well around 4000 nodes, as shown by the comparisons of models
with 4000, 5000, and 6000 node reservoirs shown in Fig. 23.

FIG. 19. FTLE fields calculated from the (top) actual and (bottom) estimated Stommel version of the QG stream functions, with time increasing from left to right.

FIG. 20. FTLE fields calculated from the (top) actual and (bottom) estimated Munk version of the QG stream functions, with time increasing from left to right.
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Different hyperparameter tunings are model-dependent, as
expected. It is important to note that the adjacency matrix repre-
senting the node connections in the reservoir is sparse, so although
there is a high number of nodes, there are not necessarily as many
connections. On the other hand, the complexity of the reservoir still
increases with the additional node count, which could contribute
positively to modeling capability.

With regard to spectral radius, the DG model performs well
with a spectral radius of approximately 2.3 or less (Fig. 24), while
the QG model performs well with a value in the range 0:4� 0:6
(Fig. 25). Spectral radius is a vague proxy to long-term memory
required by the model to learn, so this result suggests that the QG
model evolves based on shorter-term history.

FIG. 21. FTLE fields calculated from the (top) actual and (bottom) estimated Inertial version of the QG stream functions, with time increasing from left to right.

FIG. 22. Error of estimated DG stream function against actual DG stream function
over time with varying reservoir sizes.

FIG. 23. Error of estimated QG stream function against actual QG stream function
(Highly Nonlinear version) over time with varying reservoir sizes.

FIG. 24. Error of estimated DG stream function against actual DG stream function
over time with varying spectral radii.
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