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Abstract. This work presents a strategy to enable a team of mobile robots to
adaptively sample and track a dynamic spatio-temporal process. We propose a
distributed strategy, where robots collect sparse sensor measurements, create a
reduced-order model of the spatio-temporal process, and use this model to esti-
mate field values for areas without sensor measurements of the dynamic process.
The robots then use these estimates of the field, or inferences about the process,
to adapt the model and reconfigure their sensing locations. We use this method
to obtain an estimate for the underlying flow field and use that to plan optimal
energy paths for robots to travel between sensing locations. We show that the er-
rors due to the reduced order modeling scheme are bounded, and we illustrate the
application of the proposed solution in simulation and compare it to centralized
and global approaches. We then test our approach with physical marine robots
sampling a spatially non-uniform time-varying process in a water tank.

Keywords: adaptive sampling, reduced order modeling, path planning, multi-
robot systems, distributed robot systems, sensor networks, swarms, marine robotics

1 Introduction

The ocean poses an immensely complex fluid dynamical challenge, involving the in-
terplay of rotation, stratification, complex topography and variable thermal and atmo-
spheric forcing, not to mention thousands of biological, chemical, and physical inputs.
It is the “engine” that drives weather-climate systems worldwide [10], inextricably link-
ing human life to the ocean. Recent years have seen an increase in the pursuit of robotics
technology to support a wide range of activities in marine and littoral environments. Ex-
amples include commerce (e.g., aquaculture), natural resource gathering (e.g., mining
and mineral exploration), construction and repair (e.g., pipeline servicing and inspec-
tion), scientific exploration (e.g., health monitoring of coral reefs), search and rescue
efforts (e.g., aviation and maritime accidents), and military operations (e.g., surveil-
lance and mine sweeping).

In all these applications, robots must have the ability to estimate, predict, and track
complex and dynamic spatio-temporal processes (e.g., plankton assemblages [2], harm-
ful algae blooms [67, 4, 7]), and temperature and salinity profiles that vary across both
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space and time [41, 66, 61]. In general, teams of mobile robots are particularly well-
suited to monitor these processes since they have the ability to span large physical
scales and obtain simultaneous, real-time measurements at distinct locations using their
on-board sensors. The gathered data can be used to develop a model of the environ-
ment/processes being monitored and the model can be continuously used and updated
to adapt the robots’ sensing locations and improve the team’s ability to track and pre-
dict the process they are monitoring. Nevertheless, complex spatio-temporal processes
are often difficult to model and represent. Even when representations are available, the
representations are often high-dimensional and computationally burdensome, making it
difficult for resource constrained robots to execute by themselves. Since the processes
being tracked often occur in dynamic and uncertain environments, it is critical that
robots do not rely on centralized strategies to reduce the impact of limited communi-
cation and robot failures. As such, a significant challenge is the development of dis-
tributed modeling and estimation strategies for teams of robots tracking time-varying
spatio-temporal processes.

Existing work on multi-robot coordination for environmental monitoring, mapping,
and modeling applications generally fall under two categories: coverage control and
Gaussian process (GP) based information maximizing exploration/search. The seminal
work by Cortes et al. on optimal sensor placement relies on a weighting function to
account for sensing quality and to ensure coverage of the given spatial domain [6].
While the original work assumes the weighting function must be specified a priori,
the work has been extended in several ways. The stochastic uncertainty associated with
modeling the weighting function was incorporated online to optimize the deployment
of the sensors in [39]. A strategy for learning the weighting functions online, rather
than specifying them a priori, was proposed in [53]. A significant advantage of existing
coverage control strategies is their ease for distributed implementation. However, these
techniques only account for the sensor limitations and ignore the fundamental physics
that governs the dynamics of processes of interest. As such, sensing locations provided
by these strategies often fail to capture the relevant features needed to obtain a suitable
estimate of the field.

In recent years, GPs have been widely used to model various spatio-temporal pro-
cesses. In [23], the environment is modeled using GPs and the objective is to learn con-
fidence measures on the uncertainty of the model. The uncertainty is then employed to
plan minimum risk trajectories for underwater robots. GPs are used to model the quanti-
ties of interest being monitored by the robot where the models are then used in a stochas-
tic optimization strategy to minimize regret when collecting measurements/samples [9].
GPs are used to create a map of the environment in [27]. The map is partitioned so robots
can determine nearby locations and select future sampling locations that reduces the en-
tropy in the map. The work presented in [18] adapts the model in real-time based on
observations and optimizes next best sensing locations based on the updated model for
a small team of mobile robots. However, similar to coverage control strategies, tech-
niques that rely on using GPs to model the environment/process neglect the physical
principles that give rise to the dynamics of the fluid flow. Furthermore, existing work
only accounts for the spatial variations of the field and neglects the temporal variations
of the field. These limitations are partly because GPs are incapable of capturing the
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important nonlinearities of the process of interest since they are not suitable for mod-
eling multi-scale processes or processes that are described by functions with varying
smoothness.

Similar to [41] and [12], our work focuses on the fusion and control of active sensor
networks. We consider the modeling and estimation of spatio-temporal processes and
how robots can leverage the process model to adapt their sensing locations. We employ
proper orthogonal diagonalization (POD) to obtain a model of the process being tracked
and use this model to adapt the team’s sensing locations. The problem of identifying
optimal sensor placements has been addressed in existing work [17, 38], even in the
context of optimal sensor placement for reduced-order modeling using POD techniques
[14, 1, 64, 48, 16, 13]. Nevertheless, existing work only addresses the placement of
static sensors and does not leverage a robot’s mobility to adapt their measurements in
response to the changing environmental conditions. These works also assume complete
knowledge of the time-series data used to derive the reduced-order model using POD
and do not address the assimilation of new data into the existing model.

As robots navigate within the workspace to obtain new measurements and the new
data is assimilated into the model, the updated model is then used to improve the se-
lection of next best locations for new measurements. A challenge of operating in a
time-varying and stochastic flow environment is that the effects of the surrounding fluid
dynamics is tightly coupled with the vehicle dynamics. With enough control author-
ity, these environmental effects can be modeled as external disturbances [8, 65] or as
a known external flow field [11] and corrected by the vehicle’s navigation controller.
However, it is often difficult for a power constrained vehicle to reach the desired goal
location using these approaches. Recent work has shown that AUV/ASV motion plan-
ning and adaptive sampling strategies are improved by incorporating either historical
ocean flow data [58, 60, 59] or multi-layer partial differential equation (PDE) models
of the ocean [63, 40, 33, 32]. Nevertheless, accessibility to and the overall quality of
the flow data and/or numerical models is highly dependent on how well a given region
of interest is instrumented. This is because numerical PDE models are often derived
through a combination of theoretical and field observations. Ocean current hindcasts,
nowcasts, and forecasts provided by Naval Coastal Ocean Model (NCOM) databases 3

and regional ocean model systems (ROMS) [60] are assimilated from satellite and field
observations in conjunction with predictions from numerical PDE models [55, 56]. De-
spite significant advances in ocean modeling and data assimilation, high fidelity in-situ
sensing, and increasing computational power, the predictability of existing models has
been limited, particularly at the submesoscale. The thousands of biological, chemical,
and physical inputs coupled with limited data and computational power for assimilation,
makes it very challenging to reconcile spare, uneven observational data with values pre-
dicted by the field models. As such, any adaptive sampling must take into consideration
vehicle motion and prediction uncertainties.

In this chapter, we describe our efforts in developing an adaptive sampling frame-
work for teams of energy constrained mobile sensors operating in dynamic and uncer-
tain flows. We present a distributed strategy for mobile robot teams to build a reduced-
order model of a spatio-temporal process of interest using sparse sensor measurements.

3 URL: http://cordc.ucsd.edu/projects/mapping/maps
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The model is then used to predict and infer field values in regions of the workspace that
are not covered by the team. Using their predictions, the robots can then adapt and re-
configure their sensing locations to maximize the effectiveness of the new observations
for improving the process model. Furthermore, we show how the model can be lever-
aged to compute minimum energy trajectories for power constrained vehicles to enable
them to leverage the surrounding flow for navigation to their next sensing locations.
The contributions of this work are two-fold. First, we propose a framework that uses
the dynamics of the process to allow robots to compactly model the environment, in-
fer properties of the environment using sparse sensing data, assimilate these inferences
to update the model, and compute energy optimal paths to new sensing locations. The
proposed framework allows for a non-balanced assignment of regions to robots, where
robots are able to estimate properties of the environment in regions for which there
is no available sensing data. Second, we exploit the structures of the model and infer-
ence techniques to synthesize a distributed algorithm for the computation of the process
model and the estimation of the field values. Different from related works in this do-
main, we explicitly use the dominant spatial and temporal characteristics of the dynamic
process to determine the team’s next best sensing locations, compute energy efficient
trajectories to reach those destinations, and update the model and predictions. We con-
clude with a discussion on how recent geophysical fluid dynamics insights are leading
to new strategies for distributed modeling, sensing, estimation, and control strategies of
autonomous unmanned systems in dynamic and uncertain environments. By exploiting
these new geophysical fluid perspectives, it may be possible to develop a large-scale dis-
tributed modeling, sensing, and estimation framework where collectives of autonomous
unmanned systems have the ability to maintain and update a global description of the
flow dynamics in real time.

2 Preliminaries

In this section, we provide some preliminaries and present our assumptions on the vehi-
cle models, the process/flow field, and cost functions employed to compute our energy
optimal trajectories for the mobile robots.

2.1 Environment and Flow Model

We consider tracking a dynamic process in a continuous spatial region in a fluidic en-
vironment, which we will define as the workspace W ∈ Rd where d ∈ {2,3}. W can
be discretized into n spatial points where at each of the points, a measurement, such as
concentration, temperature, or current velocity can be obtained and provides a represen-
tation of the spatio-temporal dynamic process, P. The n spatial points can be grouped
into s non-overlapping regions. The process P can be a scalar field, e.g., temperature or
salinity field, or a vector field, e.g., flow velocity field.

When P is a time-varying flow field, it can be described as Vf : WT 7→ Rd , where
WT = W × [t, t] and [t, t] ⊂ R≥0 denotes the time interval under consideration. As
such, for x ∈ W and t ∈ [t, t], Vf(x, t) denotes the flow velocity vector. The coor-
dinates of x in the inertial frame are denoted xi, i = 1, · · · ,d and similarly compo-
nents of Vf(x, t) are denoted by Vf i, i = 1, · · · ,d. The speed of the flow is given by
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Vf (x, t) = ‖Vf(x, t)‖ and the maximum flow speed encountered in the domain is given
by Vf m = max

x∈W, t∈[t, t]
Vf (x, t). In this work, we assume that the robots are estimating

a reduced-order description of Vf given by V̂f. As such, the path planning problem
assumes that the reduced-order description, V̂f, is completely known since the robots
would simply employ their most up-to-date estimate, V̂f, for planning purposes. When
forecast uncertainties for V̂f are available, we discuss how to plan trajectories subject
to these uncertainties in Section 4. Finally, we assume that the positions of static and
dynamic obstacles in the environment are available. This information could be encoded
by a function O : WT 7→ {true, f alse}, where O(x, t) = true indicates an obstacle at
(x, t) and vice versa. Such information could be obtained online by equipping the ve-
hicles with suitable sensors, e.g., sonar range finders, lidars, RGBD cameras, etc, and
by running a parallel routine that computes the positions and possibly velocities of the
obstacles.

2.2 Vehicle Model

Given a team of q robots, we assume each robot is equipped with a sensor that is capa-
ble of sensing across each of the s sensing regions such that q < s. We assume that the
quality and range of the onboard sensors are homogeneous and that the robots can local-
ize and communicate small packets of information, e.g., matrices, with their neighbors.
Furthermore, robots can obtain an initial estimate of the dynamic process using either
historical data or some forecast model. Since q < s, each robot is responsible for moni-
toring multiple regions. However, since each robot’s sensor range is finite, the robot can
only obtain measurements for a subset of the regions assigned to it. Thus, we assume
each robot will have to rely on a pre-existing model of the process and measurements
from other areas to infer the value of the process in the assigned regions not covered
by its sensor. In this work, robots are assigned disjoint subsets of the workspace so that
each robot only has to maintain a model of the environment for its assigned regions.
Each robot is then able to share a compact amount of information about its model with
its neighbors and use model information aggregated from its neighbors to determine
the next best optimal sensing positions to obtain new data to improve their models. As
such, we assume robots communicate via a broadcast network architecture and that the
communication network remains connected at all times. Robots can move and create or
break their connections with other robots as long as the network remains connected.

For motion planning purposes, we employ a holonomic kinematic model for the au-
tonomous mobile sensor. This assumption is valid if the dimensions of the autonomous
marine vehicle (AMV) are small compared with the dimensions of the flow structures,
and if the timescales of the dynamics governing the vehicle are much faster than those
of the flow field. A typical AMV operating in the ocean satisfies both these criteria.
Using this model, the net velocity of the vehicle with respect to the inertial frame is
given by

Vnet(x, t) = Vf(x, t)+Vstill(x, t), (1)

where Vstill is the velocity of the vehicle with respect to the flow, i.e., Vstill is the “thrust”
vector of the vehicle. To achieve a given velocity Vnet, the AMV speed with respect to
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the flow needs to be

Vstill =
√

(Vnet −Vf cosθ)2 +(Vf sinθ)2 (2)

where Vnet = ‖Vnet‖, Vf = ‖Vf‖, Vstill = ‖Vstill‖ and θ is the angle between Vf and
Vnet. We further assume that that the actuation capability of the vehicle is limited and
that its maximum speed is lower than the speed of the surrounding flow i.e., Vstill(x, t)≤
Vmax <Vf m.

2.3 Proper Orthogonal Decomposition

In this work, we are interested in developing reduced-order models for complex spatio-
temporal processes. While there are many techniques for extracting the dominant dy-
namics of these infinite-dimensional fields [3, 52, 50], we focus on modal analysis
techniques in the construction of a low-dimensional approximation of the process dy-
namics. In particular, we use proper orthogonal decomposition (POD) [57, 29] to obtain
a representative reduced order model of the flow field.

In POD analysis, m snapshots of the field are collected, either through experimenta-
tion or numerical simulations, such that at each time t = 1, ...,m, zzz(((ttt)))= [z1(t), ...,zn(t)]>,
where n is the spatial dimension of some discretization of the flow field. A covariance
matrix is constructed as

KKK =
1
m

m

∑
t=1

zzz(((ttt)))zzz(((ttt)))> =
1
m

XXXXXX>, (3)

where XXX ∈ Rn×m with its columns as zzz(((ttt))). The low-dimensional basis is created by
solving the symmetric eigenvalue problem

KKKφφφ i = λiφφφ i, (4)

where KKK has n eigenvalues such that λ1 ≥ λ2... ≥ λn ≥ 0 and the eigenvectors φφφ are
pairwise orthonormal. The original basis is then truncated into a new basis ΦΦΦ by choos-
ing k eigenvectors that capture a user-defined fraction, E, of the total variance of the
system, such that their eigenvalues satisfy

∑
k
i=1 λi

∑
n
i=1 λi

≥ E. (5)

Thus, each term zzz(((ttt))) can be written as

zzz(((ttt))) = ΦΦΦccc(((ttt))), (6)

where ccc(((ttt))) = [c1(t), ...,ck(t)]> holds time-dependent coefficients and ΦΦΦ ∈ Rn×k with
its columns as φφφ 111,...,φφφ kkk. The low-dimensional, orthogonal subspace associated with ΦΦΦ

is an optimal approximation of the data with respect to minimizing least squares error.
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2.4 Cost Function

To plan energy efficient navigation strategies in marine environments, we focus on tech-
niques that reduces the overall energy utilized by the vehicle as it navigates through
the environment. As such we consider a cost function that represents the total energy
consumption of the AMV, which is given by Etotal = Ehotel + Edrag, where Ehotel is
the energy required to operate the vehicle’s computing and sensor systems indepen-
dent of propulsion [25], and Edrag is the energy expended to overcome drag forces
exerted by the fluid. Assuming a constant power usage Kh by the computing and sen-
sor systems gives Ehotel =

∫ tg
ts Khdt. The drag force Fd encountered by the AMV is

given by Fd(t) = KdV α−1
still (x, t) where Kd is the drag coefficient and α ∈ {2,3, ...}.

If α = 2 the drag is linear, if α = 3 the drag is quadratic, and so on. This leads to
Edrag =

∫ tg
ts KdV α

still(x, t)dt. Thus, the total cost of a path is given by

C =
∫ tg

ts
Kh +KdV α

still(x, t)dt. (7)

Note that Kh and Kd can also be thought of as weighting parameters between minimum
time paths and minimum energy paths. If a minimum time path is required, we could
set Kd = 0 and proceed, and vice versa. If exact energy minimization is required, actual
values for Kh and Kd should be used.

3 Adaptive Sampling and Reduced-Order Modeling

In this section, we describe a distributed strategy to enable a mobile robot team to adap-
tively sample and track a dynamic spatio-temporal process [51]. The approach enables
the team to create a reduced-order model (ROM) of the process using sparse sensor
measurements and using the model to determine the next best locations for obtaining
new data to improve the model. The strategy is distributed in that each robot develops
its own ROM using its sensor data and sensor data provided from their teammates. The
ROM is then used to infer measurements in regions where no measurements are avail-
able and new measurement locations are then determined based on these inferences.
The robots navigate to these new locations, obtain new measurements which are then
assimilated into the model, and the process is repeated. In this section, we briefly sum-
marize our strategy by presenting the centralized approach and describing a distributed
implementation of the centralized strategy. We briefly discuss simulation and experi-
mental results. The interested reader is refer to [51] for the details. Finally, in order to
quantify the uncertainty between the dynamic process of interest and the reduced order
model constructed by the robots, an error analysis is presented.

3.1 Optimizing Robot Locations for Field Reconstruction

Given a low-dimensional representation of the subspace on which the data is located,
we leverage the properties of the orthogonal bases obtained via POD to compute the
optimal set of robot locations in the workspace for the reconstruction of the field using
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only sparse data in real-time. Consider the problem of reconstructing a field from mea-
surements in q arbitrary sensing regions. Given s total sensing regions, let S⊂ {1, ...,s}
where S contains the locations of the q sensing regions. Measurements of the field
are collected over the q sensing regions as yyyr(((ttt))) for sensing region r ∈ S, where each
yyyr(((ttt))) ∈Rnr×1 for nr points of measurements in region r. Let matrices ΦΦΦ rrr ∈Rnr×k such
that the rows of ΦΦΦ rrr are the rows of ΦΦΦ corresponding to the locations in sensing region
r. Using the gappy POD [14, 29, 64], the time-dependent coefficients that minimize the
distance between yyy(((ttt))), sensor values, and ŷyy(((ttt))), the projection of sensor values onto the
subspace associated with the vectors {ΦΦΦ rrr}r∈S can be found using

ĉcc(((ttt))) = AAA−1BBB

for AAA = ∑
r∈S

ΦΦΦ
>
rrr ΦΦΦ rrr and BBB = ∑

r∈S
ΦΦΦ
>
rrr yyyr(((ttt))),

(8)

where this time-dependent coefficient ĉcc(((ttt))) is then applied to ΦΦΦ as in (6) to recover the
values of the field for which there are no sensor measurements.

To optimize the reconstruction of the full field using only measurements from the
q regions, one must determine the q sensing regions from the set of S possible regions.
Note that the matrix AAA ∈ Rk×k depends only on the set of S sensing regions and is not
time varying. If measurements from all sensing regions were used, the matrix AAA would
be the identity matrix since AAA = ΦΦΦ

>
ΦΦΦ = III for ΦΦΦ containing orthonormal columns and

the coefficients ĉcc(((ttt))) could be calculated exactly using (6). However, since only some
and not all sensing regions are being used, the sensing regions should be chosen such
that the rows of the eigenvectors corresponding to these sensing regions create a basis
that is close to orthogonal. Additionally, [1] provides a criteria for selecting the optimal

Fig. 1: Geometric interpretation of maximizing the minimum eigenvalue. The data point yn con-
taining all the measurements of the field is projected as yr onto the subspace Pr, where yr equiv-
alently represents a vector of just the sensor measurements, and is projected as ŷn onto the low-
dimensional subspace ΦΦΦ . As the angle between Pr and the subspace associated with ΦΦΦ decreases,
the projection error between yr and ŷn also decreases.
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set of sensing regions S as
max

S
min

i
λi(AAA), (9)

where maximizing the minimum eigenvalue of AAA in turn minimizes the maximum angle
between the subspace associated with ΦΦΦ and Pr, the subspace associated with using only
the sensor measurements, as shown in Fig. 1.

Let ai j represent entries in AAA and ri = ∑ j 6=i |ai j|. The Gershgorin circle theorem [19]
states that all eigenvalues of AAA lie in a circle centered at aii with radius ri. Using this
property of the eigenvalues of AAA, an estimation of (9) is given by

max
S

min
i

aii, (10)

where maximizing the minimum diagonal element of AAA seeks the set S that results in the
basis used to compute AAA being both close to orthonormal and minimizing the distance
between the the subspaces associated with ΦΦΦ and {ΦΦΦ rrr}r∈S. We employ the algorithm
developed in [1] and extended in [17] to find the set S that satisfies criteria (10).

3.2 Adaptive Computation of Reduced Order Model and Robot Locations

The techniques described in [14, 1, 17, 64] rely on computing POD basis vectors using
all the available snapshots of data over the process. Instead, we propose a method that
dynamically adapts the POD basis vectors using incoming data and reconfigures the
robot positions based on the adapted POD.

At the start, i.e., instance 0, POD basis vectors ΦΦΦ(((000))) are computed using T arbi-
trarily selected snapshots {zzz(((ttt0,1))), ...,zzz(((ttt0,T )))} where zzz(((ttt0,i))) ∈ Rn×1. The T snapshots
are gathered from either experiments or numerical simulation based on the equations
governing the process of interest. A set of sensing regions S(0) is selected according
to the algorithm described above, where robots are then deployed to collect measure-
ments. Estimates of the field are computed using yyyr(((ttt))) for r ∈ S0 the collected sensing
data, {ΦΦΦ rrr(((000)))}r∈S0 the POD basis over the sensing regions, and the relationship (8). At
instance 1, the new inferences are assimilated into the covariance matrix KKK as in (3)
as new snapshots, at which point the POD basis vectors are recomputed as ΦΦΦ(((111))) and a
new set of sensing regions S(1) are found. This procedure is repeated for the duration of
the mission. This is contrast to other techniques that compute the POD basis requiring
all the initial data and do not update the POD basis after new observations.

3.3 Distributed Implementation

The procedure described above can be implemented in a distributed fashion. In this sec-
tion, we first show how the procedure can be distributed and conclude with an analysis
of the bounds on the error resulting from the ROM.

Methodology A comparison of the centralized and distributed approach is shown in
Fig. 2. The model of the environment is represented as a matrix with columns of eigen-
vectors, where each row of the matrix corresponds to a spatial point. These can be
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(a) (b)

Fig. 2: Comparison of a centralized framework for model-inference-assimilation scheme and the
corresponding distributed framework. (a) The centralized framework keeps a global model which
is combined with sensor measurements to estimate the field and update the model. (b) The dis-
tributed framework allows robots to take sensing measurements at specific regions and estimate
the values of the field using the current model and their neighbors’ data. These estimates are used
to update the model at the robots’ assigned locations.



Energy Efficient Adaptive Sampling 11

(a) (b)

Fig. 3: (a) Visualization of spatial points corresponding to rows of eigenvectors in the POD basis.
In (i), the full field is shown, where each region is a set of points in the field. Blue regions are
monitored by the robots and thus are the regions with sensor measurements, while the field in the
white regions are inferred using the ROM. In (ii), the dashed lines contain the regions for which
each robot either takes measurements or estimates values. The matrix in (iii) shows rows in the
POD basis that correspond to a single robot’s assigned regions indicated with the gray dashed
lines. (b) Regions assigned to a robot for sensing, estimating and modeling. The robot senses at a
location and is assigned to keep track of models of the regions for which no sensor measurements
exists. The robot uses its own ROM over its assigned regions, its collected sensor measurements,
and sensor measurements from its neighbors to estimate the values of the field for regions without
sensor measurements, all of which will then be used to update its reduced order model.

distributed to different robots, and robots can keep on-board the rows corresponding to
their assigned regions as shown in Fig. 3a. The push-sum algorithm [28] is leveraged
to allow for robots to maintain field measurements only over their respective regions,
while occasionally exchanging small packets of information with their neighbors to
understand the areas of the field without sensor measurements and recompute optimal
sensing locations, shown in Fig. 3b. Estimating the models in the areas without sensor
measurements requires aggregating information from previous models over these areas
and the new sensing measurements. Instead of having all robots compute the estimates
of field measurements for regions without sensor measurements, these regions are as-
signed arbitrarily to robots, such that the estimates of the values and models for each
region are only maintained by one robot.

Details of the push-sum algorithm are now described. Suppose some matrix PPP =

∑i PPPiii. Further, there exists agents where each agent i has access to matrix PPPiii and can
communicate with its neighbors Ni. Let MMM be an arbitrary stochastic matrix such that
mi j = 0 if agent i is not a neighbor to agent j. A stochastic matrix is used to exploit
the equivalence between averaging and Markov chains; we refer the interested reader
to [28] for more details. Each agent i can compute P̂PP

iii
, its own estimate of PPP, as shown

in Algorithm 1.

The push-sum algorithm is used for the distributed computations of a) the covari-
ance matrix from data at sensing regions, b) the eigenvectors and eigenvalues for the
POD basis vectors, and c) the time-dependent coefficients for estimating the full field.
First, we show how to compute the eigenvalues and eigenvectors of a pre-computed co-
variance matrix in a distributed fashion using existing techniques. Then, we will bypass
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Algorithm 1: Push-sum algorithm
Input : PPPiii from each robot
Output: robot i’s estimate P̂PP

iii of matrix PPP
select î, let wî = 1, and wi = 0 ∀î 6= i;
for each robot i in parallel do

P̂PPiii = PPPiii;
for loop do

P̂PPiii = ∑ j∈Ni
mi jP̂PP jjj;

wi = ∑ j∈Ni
mi jw j;

end
return P̂PP

iii
= P̂PPiii

wi

end

the need to directly compute the covariance matrix and instead compute the eigenvalues
and eigenvectors from on-board data in a distributed setting.

The method of orthogonal iteration allows for the computation of the top k eigen-
vectors and eigenvalues of a symmetric matrix KKK ∈ Rn×n using Algorithm 2.

Algorithm 2: Orthogonal iteration
set QQQ ∈ Rn×k with random elements;
for loop do

VVV = KKKQQQ;

QQQRRR
QR
= VVV ;

end
return columns of QQQ as eigenvectors;
return diagonals of RRR as eigenvalues

The distributed computation of Algorithm 2 rests on the following matrix properties,
shown in detail in [28]. However, while [28] assumes a bijection between the rows of
the covariance matrix and the robots performing the computation, we show here that
this is not strictly necessary, allowing for a non-balanced assignment of rows to robots,
where robots can be assigned an arbitrary number of rows. Every row of the covariance
matrix KKK corresponds to a location in the field. Each robot i is assigned the set of rows,
Li, of the matrices KKK and QQQ corresponding to the spatial points in its sensing region and
some arbitrary subset of the spatial points of the regions not covered by any robot. Let
L = Li ∪ (

⋃
j∈Ni

L j), where Ni is the set of neighbors of robot i so that L is the set that
contains all the spatial points assigned to robot i and its neighbors. To start, the rows
VVV lll for l ∈ Li can be estimated as a linear combination of the random row vectors QQQmmm
over all m ∈ L with coefficients alm. Then each robot can use an estimate of the matrix
RRR to apply to its set of rows VVV lll for l ∈ Li to find the corresponding rows QQQlll for the next
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iteration of orthogonal iteration. An estimate of RRR is found by leveraging the relation:

WWW =VVV>>>VVV = RRR>>>QQQ>>>QQQRRR, (11)

where QQQ>>>QQQ = III since QQQ is orthonormal and RRR is a unique upper triangular matrix.
Since WWW = ∑

n
c=1 VVV>>>ccc VVV ccc, each agent can compute WWW iii over its sensing region as WWW iii =

∑l∈Li VVV
>>>
lll VVV lll . Using the push-sum algorithm, each agent can compute estimates ŴWW

iii
, per-

form a Cholesky factorization to compute ŴWW
iii
= R̂RR

>>>
iii R̂RRiii, and apply R̂RR

−1
iii to its rows VVV lll

to compute QQQlll = VVV lllR̂RR
−1
iii . Then QQQlll is used in the next iteration of the orthonormal iter-

ation algorithm. This requires the entries of the covariance matrix KKK to be known and
communication between neighbors to estimate the values VVV lll .

We leverage the following relation presented in [49] to eliminate the centralized
computation of KKK = 1

m XXXXXX> and instead allow for the distributed computation of the
eigenvectors and eigenvalues of KKK directly from XXX without explicitly constructing KKK.
Let the Diag operator create a diagonal matrix out of a given vector and the diag oper-
ator extract the diagonal elements of a given matrix. Each column vvv jjj can be computed
as

vvv jjj =
1
m

XXXXXX>qqq jjj

=
1
m

diag(XXXXXX>qqq jjj111
>)

=
1
m

diag(XXXXXX>Diag(qqq jjj)111111>)

=
1
m

diag[XXX(111111>Diag(qqq jjj)XXX)>].

(12)

For qqq jjj = [q j(1), ...,q j(n)], the lth row of Diag(qqq jjj)XXX is equal to q j(l)XXX lll . Further-
more, the quantity 111111>Diag(qqq jjj)XXX is a matrix where each row is equal to the sum of all
the rows of Diag(qqq jjj)XXX . Thus, only the quantity FFF = ∑

n
c=1 DDDccc, where DDD = Diag(qqq jjj)XXX

and DDDccc denotes the rows of DDD, needs to be computed. Each robot can individually
compute the quantity FFF iii = ∑l∈Li q j(l)XXX lll and then can compute estimates F̂FF

iii
using the

push-sum algorithm. Then, the lth row of vvv jjj is equal to 1
m F̂FF

i>
XXX lll . This is carried for all

k columns of QQQ and VVV . The full procedure for distributed computation of eigenvectors
and eigenvalues is shown in Algorithm 3.

To estimate the time-dependent coefficients, each robot can compute its own AAAiii and
BBBiii as in (8) and use the push-sum algorithm to compute estimates ÂAA

iii
and B̂BB

iii
. Then,

robots can compute the estimate ĉcciii = (((ÂAA
iii
)))−1B̂BB

iii
and apply coefficients ĉcciii to the rows QQQlll

to estimate the values ŷyylll = QQQlll ĉcciii in the regions l ∈ Li for which there are no sensor mea-
surements. We note that in this framework, data broadcasted by each robot consists of
matrices of fixed size corresponding to low-dimensional representations of the evolving
process of interest.

Error Analysis We begin with a statement of the main result.
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Algorithm 3: Distributed eigenvectors from data
set QQQ ∈ Rn×k with random elements;
select î, let wî = 1, and wi = 0 ∀î 6= i;
for loop do

for each row r of Q in parallel do
for each robot i do

Ziii = ∑l∈Li
qlrX lll ;

Compute ẐZZiii with Algorithm 1 (push-sum);
for l ∈ Li do

vlr = 1
n ẐZZ
>
iii X lll ;

end
WWW iii = ∑l∈Li

VVV>>>lll VVV lll ;
Compute ŴWW iii with Algorithm 1 (push-sum);

Use Cholesky factorization ŴWW
iii
= R̂RR

>>>
iii R̂RRiii;

QQQlll =VVV lll R̂RR
−1
iii ;

end
end

end
return rows QQQiii as eigenvectors for robot i;
return diagonals of R̂RRiii as eigenvalues for robot i;

Theorem 1. For sufficient mixing time τ , as determined by the criteria for mixing
speeds of Markov Chains [28], δ = ti+1 − ti the time between collected snapshots,∥∥∥ d fff (t)

dt

∥∥∥ ≤ ξ for fff describing the dynamic process, the bound between (PPP+PPP⊥), the
projection corresponding to the dynamic process and PPPQ̂QQiii

, the projection onto the POD
basis vectors estimated by robots with high probability is defined as:∥∥∥(PPP+PPP⊥)−PPPQ̂QQiii

∥∥∥
2
≤ eγτ(2λk+1 +

δ 2

8
ξ )+O

∣∣∣∣λk+1

λk

∣∣∣∣τ ∗n+(C+2)ε4τ (13)

The proof consists of two main components. First, the error between a dynamic
process and its centralized POD basis vector estimation is computed. This explicitly
takes into account the time between snapshots. Second, the error between the central-
ized POD basis vector estimation and the decentralized POD basis vector estimation
is computed, taking into account the errors incurred by individual robots through the
push-sum algorithm. The results are aggregated to derive a final estimation on the error
between the dynamic process and the estimated POD basis vectors computed by the
robots. The derivation of the bound can be found in the Appendix.

3.4 Task Allocation

Using the distributed algorithm, individual robots can adaptively calculate their respec-
tive eigenvectors and eigenvalues. They can then share the necessary properties of their
eigenvectors to their neighbors so each robot can compute the optimal sensing locations.
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After finding the set of optimal sensing locations, robots are assigned to locations that
minimize the total cumulative energy cost incurred by all robots. In the next section,
we present how the path costs and the corresponding optimal paths are computed for a
given robot and its list of destination points. Once the energy cost matrix between all the
robots and the next set of sensing locations is computed, we perform a task assignment
using the Hungarian algorithm to reduce the overall energy cost. The flow velocity de-
scription Vf, required for path planning could be obtained using the same reduced order
modelling framework described above. In this case, since the process being observed,
i.e., flow velocities, are d-dimensional vectors with d ∈ {2,3}, the measurement vector
z(t) would have d×n entries instead of the n entries for the scalar case.

4 Planning in Flows

In this section a graph based solution method to compute optimal paths in time-varying
flows is presented. The method allows for searching across different actuation speeds
at each node in order to compute the globally optimum trajectory. It accounts for the
time-varying nature of the environment and also considers an adaptive discretization
resolution scheme for graph construction. In the context of the previous section, this
general method could be used to compute the optimal path cost from the current agent
position to the next sensing location. The graph based nature of the approach makes it
possible to compute the optimal energy cost from the current position to each of the
next candidate sensing locations in one go.

All the graph based path planning strategies mentioned in section 1 are based on a
fixed discretization scheme, where the environment is discretized uniformly. The im-
plicit assumption in any graph based method is that the properties of the system (thrust,
flow velocity, etc.) remain constant along edges of the graph. However, in reality, these
system properties will vary along edges. Thus, this assumption will give rise to errors
in the state dependent costs (e.g., energy cost) computed for the edges. These errors
would be more pronounced if the discretization is coarse, and would lead to incorrect
results. It is possible to overcome this by allowing system properties to change along
edges. However, such a solution is computationally infeasible since the edge cost com-
putations would now require the solution to a two point boundary value problem at each
edge. Alternatively, the discretization resolution could be made very fine, which would
again lead to a computationally intractable problem.

In the approach presented in this section, these errors due to discretization reso-
lution are overcome with a novel adaptive discretization scheme. Similar to existing
graph based methods, the environment is represented as a discrete graph and a search
algorithm is used to find an optimal path in the graph. The fundamental difference of
the presented method lies in the adaptive discretization scheme used in the construction
of the graph. In this method, the discretization resolution is selected locally according
to the flow characteristics at each point. Specifically, the discretization resolution is se-
lected such that the flow velocity error remains bounded along an edge. Thus, if the
flow changes rapidly at a point, the resolution is made finer, and if the flow remains
relatively constant, the discretization resolution is made coarser. The result is the first
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graph based method that uses adaptive discretization to compute optimal paths in time-
varying flows.

We use a discrete graph G = (V , E ) to represent the workspace WT , where V
is the vertex set and E is the edge set. Each vi ∈ V represents a point in WT and is
identified by the pair (xi, ti). Each ei j ∈ E represents a directed edge from vi to v j and
has an associated traversal cost computed using (7). In computing the the edge cost, we
assume that the flow velocity along the edge remains constant at Vf(vi), the flow at the
base of the edge. Note that with a little abuse of notation, we sometimes represent the
flow velocity at a vertex vi with Vf(vi).

4.1 The need for adaptive discretization

To illustrate the need for adaptive discretization in graph based methods for planning
optimal paths in time-varying flows, consider three cases of the wind-driven double
gyre flow model which is often used to describe large scale recirculation regions in the
ocean [62]. The model is given by

Vf 1(x, t) =−πAsin
(
π f (x1, t)

)
cos(πx2)−µx1 (14a)

Vf 2(x, t) = πAcos
(
π f (x1, t)

)
sin(πx2)

∂ f (x1, t)
∂x1

−µx2 (14b)

f (x, t) = ε sin(ωt)x2 +
(
1−2ε sin(ωt)

)
x (14c)

where A determines the maximum speed of the flow field, µ is a dissipation constant,
and, ε and ω respectively determine the amplitude and the frequency of the time-
varying oscillations of the flow field.

In the three cases considered, the fixed resolution multi time-step search method
described in [34] is used to compute optimal energy paths. In [34], the spatio-temporal
workspace is uniformly discretized using fixed intervals ∆x and ∆ t. In the first two
cases, the flow field parameters are selected to be A = 1, ω = 4π and ε = 0.1. For
the third case, a value of ε = 0.6 is selected while leaving the rest of the parame-
ters unchanged. In all three cases µ = 0. This results in a maximum flow speed of
Vf m = 3.74m/s and Vf m = 6.73m/s for the first two cases and the third case respectively.
However, in both cases the average flow speed is ≈ 2m/s. Lastly, in all three cases, the
maximum vehicle speed is set as Vm = 2m/s.

In case 1, a discretization resolution of ∆x = 0.01m, and ∆ t = 0.1s was used for
the graph search and the results are shown in red in Fig. 4a. It can be clearly seen that
the resulting path does not match the expected path shown in black. One reason for this
discrepancy is due to ∆ t being set too high with respect to ∆x, resulting in an overly
slow edge traversal speed (≈ 0.1m/s). For case 2, ∆ t was set to 0.01s so as to increase
the edge traversal speed. The results are shown in Fig.4b which is much closer to the
optimal path. Thus, it is clear that the size of ∆x and ∆ t has to be selected according
to the local flow speeds to yield better results. Case 3 further supports this assertion.
While the larger ε value in Case 3 (0.1 vs. 0.6) does not affect the average flow speed, it
results larger spatio-temporal variations within each region of the flow field. Since the
encountered flow speeds are of similar magnitudes for both cases 2 and 3, one would
expect similar results if the same discretization resolutions were used. However, Fig.
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4c shows that the resulting path computed for case 3 does not match the expected path.
This mismatch is a result of the large spatio-temporal variations of the flow within
the volume of space-time centered at each vertex, which violates the assumption that
the flow velocity remains constant along an edge of the graph. As such, appropriate
selection of ∆x and ∆ t that ensures that the local flow remains relatively constant, is
crucial for obtaining good results. This is especially true in highly turbulent regions of
the flow field where the discretization resolution has to be made finer to account for the
larger changes over the same space-time volume.

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 4: Expected optimal path (in black) vs computed optimal path (in red). Case1: ∆x = 0.01m
and ∆ t = 0.1s results in erroneous results as the selected discretization does not match the flow
speeds encountered. Case 2: ∆x = 0.01m and ∆ t = 0.01s results in a better result. Case 3: The
flow is changed by setting ε = 0.6, with the same discretization as case 2. However, the result is
incorrect because the discretization does not consider the spatio-temporal variation of the flow.

4.2 Adaptive discretization method

The implicit assumption in any graph based method for computing optimal paths in
time-varying flows is that the flow velocity remains constant along the edges of a graph.
Thus, in order to overcome the issues highlighted in the example above, the discretiza-
tion resolution should be selected to be small enough so that the actual flow velocity
variation along an edge in the graph is small.

Consider an edge ei j = (viv j) from node vi = (xi, ti) to node v j = (xj, t j) with xj =
xi +dx and t j = ti + dt. It is assumed that the flow velocity at v j can be approximated
by a first order Taylor series expansion at vi given by

Vf(v j) = Vf(vi)+ ∇̃Vf(vi)dxt (15)

where ∇̃Vf(vi) is the gradient of the flow vector at vi, and dxt = [dxT , dt]T . Since the
flow is assumed to be constant along an edge, the error in the velocity along an edge is
given by

Ve = Vf(v j)−Vf(vi) = ∇̃Vf(vi)dxt. (16)
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Thus, the magnitude of the velocity error due to a displacement dxt is

‖Ve‖=
√

Ve
T Ve =

√
dxt

T H(vi)dxt,

where H(vi) = ∇̃Vf
T (vi)∇̃Vf(vi) is a symmetric matrix. As such, it can be shown that

‖Ve‖=
√

dxt
T H(vi)dxt ≤ λmax(vi)‖dxt‖, (17)

where λmax > 0 is the maximum eigenvalue of H(vi). This maximum error occurs when
dxt is parallel to vmax which is the direction of the eigenvector corresponding to λmax
(see Fig. 5a). Thus, to limit the flow velocity error along the edge, we require

‖Ve‖ ≤ λmax(vi)‖dxt‖ ≤ p‖Vf(vi)‖ (18)

where 0 < p < 1 is a ratio that specifies the magnitude of the allowable error in terms
of the flow at the base of the edge. To ensure (18) is satisfied by any edge emanating
from vi, we require

‖dxt‖ ≤ dxtmax =
p‖Vf(vi)‖
λmax(vi)

. (19)

Since the edge length limit dxtmax in (19) is computed using a first order approximation
of the error, it will not be correct for large ‖dxt‖. To address this, Newton’s root finding
method is used along the vmax direction, with vt1 = vi+dxtmax vmax as the initial point, to
find the point vp = (xp, tp) along vmax, that has a velocity error very close to p‖Vf(vi)‖
(see Fig. 5b). The maximum allowable spatial and temporal displacements at node vi,
dxmax and dtmax are then respectively selected as

dxmax = ‖xp−xi‖, (20)
dtmax = |tp− ti|. (21)

4.3 Adaptive Single Time-step Search (aSTS) method

In case 1 of the illustrative example, we showed that the spatial and temporal discretiza-
tion given by ∆x and ∆ t need to be selected according to the speed of the flow. If ∆x
and ∆ t were chosen such that the resulting edge traversal speed (≈ ∆x/∆ t) is either too
fast or too slow, the results would be incorrect. Here, we present the adaptive Single
Time-step Search (aSTS) method which explicitly considers the local flow speeds, in
addition to the limits established in (20) when selecting the discretization resolution.
Our method ensures that the flow velocities remain relatively constant along edges,
and that the resulting edge traversal speeds are commensurate with the underlying flow
speeds.

During graph construction, the aSTS method considers the region of space that
could be reached from a given node vi in a single time step ∆ t, under the influence
of both the vehicle actuation and the flow velocity at vi. This reachable space is demar-
cated by an n-ball of radius Vmax∆ t centered at x = xi+Vf(vi)∆ t. In 2-D, this reachable
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(a) (b)

Fig. 5: (a) Velocity error magnitude surface at vi. The distance of each point on the surface from
vi represents the magnitude of the error in that direction. The maximum velocity error occurs
along vmax. (b) Newton’s root finding method is used along the vmax direction to find the point
vp that has a velocity error of exactly p‖Vf(vi)‖.

space is a circle and is discretized using a hexagonal lattice of vertices, centered at x
with 2q+1 vertices along the main axis (3q2 +3q+1 nodes in total, see Fig. 6a). In 3-
D, the reachable space is a sphere (see Fig. 7a). In order to discretize this space, results
for the ‘sphere packing problem’ are used. It has been shown that, densest packing of
spheres in three dimensions can be obtained using either the face centered cubic (FCC)
method or the hexagonal close packed (HCP) method [5], and in the current application,
the HCP method is used. In the HCP method, the base layer (A) consists of a tightly
packed planar layer of spheres. The second layer (B) is constructed on top of the A
layer, by placing spheres in the hollows created by adjacent spheres in the A layer. HCP
packing is achieved by stacking A and B layers alternatively. Fig. 7b shows the reach-
able space discretized using the HCP method. The center of each sphere is considered to
be a node location is the graph constructed for the aSTS method. The number of nodes
in the lattice is decided by the number of spheres used to discretize the horizontal base
layer through x. In the instance shown in Fig. 7b, the base layer has 37 spheres (this is
equivalent to using a grid with q = 3 to discretize the reachable space in the 2D case),
which results in 95 nodes in total. The vertices in the reachable space are added to the
neighbor set N (vi) of vi. For each v j ∈N (vi), an edge ei j = (vi,v j) and a vertex v j is
added to the graph if O(v j) = f alse, i.e., if the vertex is not obstructed by an obstacle.
All the vertices in N (vi) will have the same time coordinate t j = ti +∆ t.

The time step ∆ t at each vi is selected according to the conditions given in (20).
The maximum spatial distance between vi and any v j ∈ N (vi) is (Vf +Vmax)∆ t (at
the farthest point on the reachable space). From the discussion in section 4.2, we want
∆ t ≤ dtmax and (Vf +Vmax)∆ t ≤ dxmax. Thus, for each vi, we select ∆ t according to the
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(a) (b)

Fig. 6: (a) The reachable space from vi is a circle of radius Vmax∆ t centered at x. A hexagonal
lattice of vertices is used to represent this space in the graph. In this case q = 3. (b) Since, in this
case, (V f +Vmax)dtmax > dxmax, ∆ t should be selected as ∆ t = dxmax

Vf +Vmax
according to (22).

(a) (b)

Fig. 7: (a) The reachable space in 3D is demarcated by a sphere of radius Vmax∆ t centered at
xi = xi +Vf∆ t. (b) The HCP method used to discretize the reachable space with spheres. The A
layers are in red while the B layers are in blue. For the case shown, there are 95 nodes in total.
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following rule

∆ t =

{
dtmax, (Vf +Vmax)dtmax ≤ dxmax

dxmax
V f +Vmax

, otherwise
. (22)

Selection of ∆ t according to (22) ensures that the edges added to the graph at each node
expansion satisfy the conditions specified in (20) (see Fig. 6b). The graph is constructed
by repeating this process at each node expansion (see Fig. 8), and the node expansion
is guided by the A* algorithm. The aSTS method guarantees that,

1) the maximum velocity error along any edge is less than pVf (vi),
2) the net vehicle speed along any edge is commensurate with the flow velocity at the

base of the edge.

Note that the only user selected parameters in this method are the edge velocity vari-
ation limit p and the number of vertices used to discretize the reachable space. All
discretization levels are computed automatically based on these values during runtime.
More information about this method can be found in [35]. In conventional cases, where
there is only one goal location, the algorithm is terminated when the goal has been
reached. However, in cases where optimal paths and path costs are required to mul-
tiple goal locations, as in the case of the task allocation phase of the reduced order
modelling framework, the graph search could be continued until all goal locations have
been reached.

Fig. 8: Construction of the graph for 2-D environments using the aSTS method. All the vertices
reachable within a single time step from the base node are considered as neighbors.

4.4 Planning with forecast uncertainties

The reduced order modelling framework described in Section 3 makes it is possible to
obtain uncertainty estimates for the flow velocities provided by the ROM. When un-
certainty estimates are available, the aSTS method could be used to compute minimum
expected cost paths. In such cases, the edge cost function used in the aSTS method
needs to be modified to be

dCi j =
(
Kh +KdE[Ṽ α

still j
]
)
dT
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where

E[Ṽ α
still j

] =
1

2πσ f 1 · · ·σ f d

∫
· · ·
∫ ( d

∑
k=1

x̂2
k
)α/2e

−

[
∑

n
k=1

(x̂k−Vstill jk
)2

2σ2
f k

]
dx̂1 · · ·dx̂n. (23)

In (23), Vstill jk is the kth component of the thrust vector (Vstillj ) required to reach node
v j from vi in a deterministic flow, and σ f k is the standard deviation of the flow velocity
estimate in the kth direction. More information about this derivation and the associated
assumptions can be found in [37].

5 Simulations and Experiments

In this section we present simulation and experimental validation for the methodology
presented in the previous sections. We first present a systematic validation of the POD
based reduced order method presented in Section 3, and then present simulation based
validation for the path planning scheme used to navigate the robots from the current
sensing location to the next.

5.1 Results for the POD based reduced order modeling method

Analyses were carried out both in simulation and on physical robots. In simulation, a
1 m × 1 m two-dimensional grid space was modeled using video data from an experi-
mental flow tank at low Reynolds number. The fluid experiment was conducted in a 10
cm× 10 cm tank with glycerol at a depth of 1−2 cm. The tank is equipped with a 4× 4
array of equally spaced submerged disks. The mechanism creates a cellular flow where
two sets of 8 disks are separately controlled via independent stepper motors and speed
controllers. As such, the resulting flow has both a spatially non-uniform and a tempo-
rally complex pattern. The dye was strategically placed at the start of the experiment
such that the resulting unsteady flow would stretch the dye along dynamically distinct
regions in the flow field. Concentration values of the dye in the tank were estimated for
each time step from the grayscale values of the pixels of the images from a grayscale
video of the LoRe tank.

In simulation, the grid space was discretized into 9 non-overlapping regions. 4
robots were simulated in the field. Concentration values of the field were initially gath-
ered for 100 equally spaced times across the time series, and Gaussian noise was then
added to these concentration values. These were then used to construct the initial POD
basis for the distributed placement algorithm. Data was collected for another 100 se-
quential times before adapting the POD basis and recomputing the placement. The dis-
tributed placement algorithm was compared to the centralized placement algorithm,
where all computations occur on a centralized system and are broadcasted to robots.
Additionally, the distributed placement algorithm was compared with radial basis func-
tion (RBF) interpolation schemes. Two RBF interpolations were computed using the
real data: 1) from the regions determined as sensing locations from the distributed
method and 2) from randomly selected points across the entire field. All of these meth-
ods were compared against the optimal placement that was calculated using noiseless
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data across the entirety of the time series. Simulations were carried out for various
number of robots, discretizations of the spatial domain, and number of snapshots for
the initial construction of the POD basis.

Fig. 9: Norm-wise relative error between field simulation and various field estimation algorithms
at each time step. Estimations are calculated using (a) RBF using sensing data, (b) RBF using
random points, (c) proposed distributed algorithm, (d) centralized version of proposed algorithm.
Black circles represent estimations calculated using the optimal placement determined by using
all data to calculate the POD basis. Gray vertical lines indicate robots switching their placement.

The simulation results of the comparison of the various field estimation schemes
over the entire time series are shown in Fig. 9. The Frobenius norm-wise error be-
tween the actual concentration value and the estimated field computed using various
algorithms was computed for each time step. The Frobenius norm-wise error, e, is cal-
culated for field estimate ẑzz(((ttt))) using e = ||ẑzz(((ttt)))− zzz(((ttt)))||F/||zzz(((ttt)))||F , where ||zzz(((ttt)))||F =√

∑i |zi(t)|2. Both RBF interpolation schemes perform significantly worse than place-
ment algorithms using POD. Even in the case of the RBF with randomly selected sensor
points, the field estimation is approximately an order of magnitude worse than the three
placement algorithms using POD. However, the distributed algorithm and centralized
algorithm perform just slightly worse than the optimal placement determined by using
all data to calculate the POD basis.

The mean absolute error of the various field estimation schemes is shown in Fig.
10. The RBF interpolation scheme using the data from the sensor measurements results
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Fig. 10: Mean absolute error at spatial points calculated over time series for various field esti-
mation algorithms. Concentrations at points are calculated using (a) RBF using sensing data, (b)
RBF using random points, (c) optimal placement determined by using all data to calculate the
POD basis, (d) centralized version of proposed algorithm, and (f) proposed distributed algorithm.
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in high error across the field, as it is unable to adequately estimate values in regions far
from the sensing locations. The RBF interpolation scheme using random points fails to
capture the interesting features of the process. The distributed algorithm fails in similar
areas as compared to the optimal placement algorithm. This can be attributed to little
to no data being collected over these regions, which makes it difficult to estimate the
concentration values over these areas. Additionally, the distributed algorithm performs
slightly worse than the centralized algorithm. This is expected given the fact that dis-
tributed algorithm uses only local information in its computation of the field estimate.

Fig. 11: Concentration field and absolute error at spatial points before and after robots switch
locations using distributed placement algorithm. Concentration field (a) and absolute errors (b)
are before the switch; concentration field (c) and absolute errors (d) are after assimilating data
and switching positions.

The adaptive nature of the algorithm allows robots to rectify tracking errors by re-
computing the POD basis and possibly reassigning the sensing locations. This is shown
in Fig. 11 where robots are able to improve field measurements for areas of high error
after reassimilating their collected data to determine new sensing locations and a new
POD basis.

The distributed algorithm demonstrates consistent results across various discretiza-
tions of the spatial region, various numbers of robots, and various initial models of the
dynamic process, as shown in Fig. 12 and 13. Mean absolute errors between the esti-
mated field and the actual field for 4 robots with 9 total regions in Fig. 12a and for 8
robots with 25 total regions in Fig. 12c perform comparably despite a nearly 15% re-
duction in the area being sensed by robots. This can be attributed to the robustness of
the constructed model. Despite the use of various initial POD bases, the distributed op-
timal placement eventually results in similar errors estimations as shown by Fig. 13a-d.
This is again due to the adaptive nature of the algorithm.

Experiments were carried out in a 5 m × 3 m water tank using 4 marine robots,
shown in Fig. 14a. The concentration field was mapped and projected onto the tank us-
ing the video from the LoRe tank, shown in Fig. 14b. The robots then tracked the pro-
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Fig. 12: Mean absolute error at spatial points calculated over time series between field and dis-
tributed algorithm for various discretizations of field, numbers of robots, and snapshots used to
compute initial POD basis. Algorithm tested for (a) 4 robots, 9 regions, and 100 snapshots, for
(b) 4 robots, 9 regions, and 500 snapshots, for (c) 8 robots, 25 regions, and 100 snapshots, and
for (d) 8 robots, 25 regions, and 500 snapshots.

Fig. 13: Norm-wise relative error between field and distributed algorithm for various discretiza-
tions of field, numbers of robots, and snapshots used to compute original POD basis. Algorithm
tested for (a) 4 robots, 9 regions, and 100 snapshots, for (b) 4 robots, 9 regions, and 500 snap-
shots, for (c) 8 robots, 25 regions, and 100 snapshots, and for (d) 8 robots, 25 regions, and 500
snapshots.
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jected concentration field using the distributed algorithm. In the water tank, the robots
were able to track the projected dye. The robots collect measurements from their sens-
ing locations and adapt their assigned models. They are able to switch locations to track
the process as shown in Fig. 15.

(a) (b)

Fig. 14: Experimental setup with marine robots. (a) Robot boat equipped with pose information
from motion capture system and ability to communicate. (b) Water tank with projection of dy-
namic process depicted in white and circled in red.

(a) (b)

Fig. 15: Robotic boats tracking dynamic process in water tank. The dynamic process is shown in
white, and robots in blue, red, yellow, and green. (a) Robots assume positions based on the initial
POD basis. (b) Robots switch positions after collecting sensor measurements and updating their
models.
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5.2 Simulation Results for aSTS method

In this section the performance of the aSTS method used to compute optimal paths for
the sensing agents to move between sensing locations, is verified in simulations. In all
simulations, the path parameters were set as Kh = 0.0005, Kd = 1 and α = 2 (linear
drag model).

The accuracy of the paths computed by the aSTS method was evaluated by com-
paring it against a path obtained by solving the corresponding optimal control problem.
The optimal control problem involves minimizing the path cost given in (7), subject to
the kinematic model in (1), and the constraint Vstill ≤Vmax. Let Γ ∗ : [ts, tg] 7→W be the
reference path obtained from the optimal control formulation of the problem, and let
Γ : [ts, tg] 7→ W be the path computed by the proposed method. The mean error (mE)
between Γ ∗ and Γ , defined by

mE =
∫ tg

ts

‖Γ ∗(t)−Γ (t)‖
tg− ts

dt, (24)

was used to evaluate the relative accuracy of computed paths. One could alternatively
use the path cost to compare the results. However, the computed path cost is a func-
tion of the discretization resolution and thus does not provide a good measure for path
quality. For example, a path with only two intermediate nodes might have better cost
because it ignores the flow variation at intermediate points along the path.

Simulations using ocean flow data The aSTS method was also used to compute op-
timal paths in a 2-D ocean environment. The data was obtained from the Regional
Ocean Model System (ROMS) for the Santa Barbara Bay area. The Southern Califor-
nia Coastal Ocean Observing System (SCCOOS) 4 generates these hourly ocean current
forecasts everyday and each forecast is for 72 hours. The data generated on July 7 and
July 8 2016 were used for the simulations. The ROMS data has a 3km× 3km× 1hr
spatio-temporal resolution and linear interpolation is used to obtain flow velocities at
intermediate coordinates. The maximum flow speed was Vf m = 0.73m/s and as such
Vmax was selected to be 0.5m/s. A hexagonal lattice with q = 3 was used to discretize
the reachable space and the error parameter was set as p = 0.1. Fig. 16 shows the com-
parison between the reference path and the path computed using the aSTS method. The
reference path computed using the optimal control formulation had a cost of 3775J. It
can be seen that the paths match closely with a mean error of mE = 169m. The path
cost obtained from the aSTS method was 4243J. As before Kh = 0.0005 and Kd = 1
were used for the simulations, and as a result, more prominence is given to reducing
the energy expended to overcome the drag forces. Therefore, the computed path tends
to follow the flow as much as possible in order to reduce relative motion between the
flow and the vehicle. This leads to the loop structure that can be observed in Fig. 16.
The video for this simulation trial can be found on https://youtu.be/6R0RevaAMmY.

Table 1 shows the results of the aSTS method for different p and q values. It shows
that increasing q while keeping p constant (paths 1-3) results in more accurate paths at

4 URL: http://www.sccoos.org/data/roms-3km/
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(a) t=12.2hrs (b) t=24.7hrs

(c) t=37.2hrs (d) t=49.7hrs

Fig. 16: Comparison of optimal path computed using the aSTS method (red) with the path com-
puted using the optimal control formulation (black) in an ocean environment. The parameters for
the aSTS method were set at q = 3, p = 0.1. Mean path error for the aSTS path is mE = 169m.

the expense of running time. Similarly, decreasing p while keeping q constant (paths
5-3) also results in more accurate paths at the expense of running times. Note that the
running time is only a fraction of the total path duration for each case. Table 2 shows
the results for paths computed using a fixed-grid discretization scheme. In this fixed
discretization method, the user has to specify ∆x and ∆ t, the spatial and temporal dis-
cretization resolutions, as well as nHx and nHt, the number of spatial and temporal
hops considered as neighbors at each expansion. In the results shown in Table 2, all
paths were computed with ∆x = 150m and nHx = 3 so that it has the same spatial dis-
cretization as the mean resolution obtained for path 3 of the aSTS method. It can be seen
that Path 1 has a similar accuracy as path 3 of the aSTS method, and the computation
is faster. However, the results obtained from the fixed discretization method depends
heavily on the user defined discretization resolution. For example, a slight increase in
the temporal resolution (path 2) results in a less accurate path. The results degrade fur-
ther when the number of temporal neighbors considered are decreased (path3). Thus,
increased accuracy cannot be guaranteed even if the discretization is made finer with
such fixed discretization schemes. However, accuracy is guaranteed to improve in the
proposed aSTS method by simply increasing q and decreasing p.

Simulations using the double-gyre flow model The aSTS method was used to com-
pute optimal energy paths in a 3-D environment where the horizontal components
Vf 1(x, t) and Vf 2(x, t) of flow field were given by the double gyre flow in (14), and
the vertical component Vf 3 was constant. The parameters for the double gyre flow were
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Table 1: Results for the aSTS method for different p and n values.

Path 1 2 3 4 5

p 0.1 0.1 0.1 0.2 0.3

q 1 2 3 3 3

mErr (m) 6426 595.3 169.2 656.3 1095

cost (J) 9200 5284 4243 4234 4179

running time (s) 385 1074 2009 687 364

path duration (s) 182800 176200 1782000 179400 180600

Table 2: Results for the fixed discretization method.

Path 1 2 3

∆ t 150 100 100

nHt 7 10 5

mErr (m) 226.5 326.0 1256

cost (J) 4191 4236 7195

running time (s) 1399 2641 816

path duration (s) 180000 180600 176000
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set as A = 1, µ = 0, ω = 4π and ε = 0.6 while the constant vertical flow component
was set at Vf 3 = 0.5m/s. Figure 17 shows snapshots of the path computed by the aSTS
method. The computed path cost was 0.0389J and the path duration was 0.84s. When
the discretization was done with 37 nodes the path cost was increased to 0.0673J. Thus,
as expected, the higher the number of nodes used to discretize the reachable space, the
better the computed path is.

(a) t=0.02s (b) t=0.30s

(c) t=0.56s (d) t=0.84s

Fig. 17: Snapshots of the path computed in a 3-D environment subject to a time-varying flow
field. The blue and red spheres indicate the start and goal positions respectively.

6 Future Outlook

In this chapter, we presented an energy efficient distributed adaptive sampling strat-
egy for a team of mobile robots to track a dynamic spatio-temporal process. We show
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how a team of mobile robots can build a reduced-order model (ROM) of the process
using sparse measurements obtained from onboard sensors. The ROM is then used to
infer measurements in regions lacking sensor coverage and the inferred data is then
used to determine next best locations for new measurements and for planning mini-
mum energy paths to the new locations. In this work, we rely on POD analysis in the
derivation of the ROM which identifies the dominant dynamics of the process based on
point measurements at specified locations over time. As such, the quality of the ROM is
highly dependent on both the spatio-temporal resolution of the measurement data. Con-
sequently, the quality of the minimum energy trajectories computed using the ROM
depends on the spatio-temporal resolution of the model. Under these circumstances, the
proposed strategies can be significantly improved by incorporating specific geophysical
fluid dynamics (GFD) insights.

Geophysical fluid dynamics is the study of natural fluid ows that span large physical
scales, such as oceans, the atmosphere, and rivers. GFD flows are naturally stochastic
and aperiodic, yet exhibit coherent structure. Recent studies of coherent structures in
GFD and other flows have shown that these ubiquitous structures are typically kinematic
and play a key role in transport. The Gulf stream is a prominent example of a coherent
jet whose heat transport is a critical component of global weather and climate. Using
GFD models, details from flows such as the Gulf stream can be used to diagnose the
underlying geophysical fluid dynamics. This, in turn, enables the prediction of various
physical, chemical, and biological processes in general geophysical flows. While the
nature of a particular flow may originate as the solution to some dynamical (force)
balance, the characteristics of the flow are an intrinsic property of its velocity vector
field. A number of important processes, including transport, can be examined by this
purely kinematic description of the flow. It is for this reason that we can witness similar
transport features across a broad range of flows and that in the control of vehicles,
as for tracers, knowledge of coherent structures may be exploited more effectively than
knowledge of the detailed predictions offered by state-of-the-art primitive equation PDE
models.

This is further supported by the work of Inanc et al. [26] where they showed that
minimum energy and time optimal paths in the ocean can coincide with a specific class
of coherent structures that are important for quantifying transport phenomena in flows
called Lagrangian coherent structures (LCS). LCS are the extensions of stable and un-
stable manifolds to general time dependent flows [21, 20] and act as separatrices that
divide the flow into dynamically distinct regions. Since these separatrices are inher-
ently unstable and denote regions of the flow where more escape events may occur
[15], knowing the LCS locations is also important for keeping sensors in specific mon-
itoring regions[42, 24, 22]. These results strongly suggest that it is possible to improve
the overall quality of deployment strategies when incorporating such GFD knowledge
in the planning, coordination, and controller synthesis process for autonomous marine
vehicles. This makes intuitive sense since coherent structures provide a reduced-order
description of the complex fluid environment and enable the estimation of the underly-
ing geophysical fluid dynamics. In fact, LCS is one example of a transport controlling
feature that can be leveraged to improve the quality ROM of the spatio-temporal process
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of interest and simultaneously be leveraged to improve vehicle maneuverability when
planning minimum energy paths.

In the past few years, we have developed distributed tracking strategies for teams of
robots to track these structures relying solely on onboard measurements obtained by the
robots [44, 45, 43, 30, 31]. An immediate direction for future work is to develop adap-
tive sampling strategies where the team is tasked to track both the coherent structures
within the workspace while simultaneously making measurements in specific regions
of the process itself. The idea is to improve the ROM by assimilating information about
the locations of the LCS in addition to specific measured quantities of the process itself.
Since LCS encodes both the stable and unstable modes of the process dynamics, the in-
corporation of this information can significantly improve the predictive capabilities of
the ROM, and thus improve subsequent deployment strategies that employs it.

Another direction for future inquiry is the development of path planning strategies
that leverage the locations of the known LCS in the workspace. Since LCS has been
shown to be both persistent [47, 46] as well as important for time and energy optimal
navigation in the ocean [26, 54], they could potentially be used as optimal paths in re-
gions for which explicit flow descriptions are not available. Furthermore, if the adaptive
sampling strategy includes the explicit tracking of LCS locations, the information can
significantly reduce the computational burden of computing an energy optimal assign-
ment of robots to the next best location for obtaining new measurements. Lastly, such
a strategy can further leverage recent stochastic control strategies that leverage LCS
knowledge to enable energy constrained vehicles to efficiently navigate from one LCS-
bounded region to another [36]. The ability to develop robust navigation strategies in
the presence of model and/or forecast uncertainties is extremely important to ensure
prolonged monitoring of dynamic and uncertain environments such as the ocean.

Appendix

Proof of Theorem 1 (See page 14)

Theorem 1. For sufficient mixing time τ , as determined by the criteria for mixing
speeds of Markov Chains [28], δ = ti+1 − ti the time between collected snapshots,∥∥∥ d fff (t)

dt

∥∥∥ ≤ ξ for fff describing the dynamic process, the bound between (PPP+PPP⊥), the
projection corresponding to the dynamic process and PPPQ̂QQiii

, the projection onto the POD
basis vectors estimated by robots with high probability is defined as:∥∥∥(PPP+PPP⊥)−PPPQ̂QQiii

∥∥∥
2
≤ eγτ(2λk+1 +

δ 2

8
ξ )+O

∣∣∣∣λk+1

λk

∣∣∣∣τ ∗n+(C+2)ε4τ (13)

Proof. For POD analysis, m snapshots of the field are collected, either through ex-
perimentation or numerical simulations, such that at each time t = 1, ...,m, zzz(((ttt))) =
[z1(t), ...,zn(t)]>, where n is the spatial dimension of some discretization of the flow
field. A covariance matrix is constructed as

KKK =
1
m

m

∑
t=1

zzz(((ttt)))zzz(((ttt)))> =
1
m

XXXXXX>, (25)
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where XXX ∈ Rn×m with its columns as zzz(((ttt))).
The low-dimensional basis is created by solving the symmetric eigenvalue problem

KKKφφφ i = λiφφφ i, (26)

where KKK has n eigenvalues such that λ1 ≥ λ2... ≥ λn ≥ 0 and the eigenvectors φφφ are
pairwise orthonormal.

In practice, m < n and we assume rank(XXX) = m. For XXXXXX> ∈ Rn×n and XXX>XXX ∈
Rm×m, rank(XXXXXX>) = rank(XXX>XXX) ≤ m. Let σi, for i = 1, . . . ,m be the singular values
XXX . The squares of the m largest singular values of XXX are the m non-zero eigenvalues of
XXXXXX> and XXX>XXX , as in σ2

i = λi is an eigenvalue of XXXXXX> and XXX>XXX .
Additionally, suppose UUU is the matrix whose columns are the set of orthonormal

eigenvectors of XXXXXX> and VVV is the matrix whose columns are the set of orthonormal
eigenvectors of XXX>XXX . Let Σ be the matrix with diagonal entries σi. Then, from singular
value decomposition, we have that

XXX =UUUΣΣΣVVV>. (27)

The original basis UUU is then truncated into a new basis ΦΦΦ by choosing k eigenvectors
that capture a user-defined fraction, E, of the total variance of the system, such that their
eigenvalues satisfy

∑
k
i=1 λi

∑
n
i=1 λi

≥ E. (28)

Thus, each term zzz(((ttt))) can be written as

zzz(((ttt))) = ΦΦΦccc(((ttt))), (29)

where ccc(((ttt))) = [c1(t), ...,ck(t)]> holds time-dependent coefficients and ΦΦΦ ∈ Rn×k with
its columns as φφφ 111,...,φφφ kkk. The low-dimensional, orthogonal subspace associated with ΦΦΦ

is an optimal approximation of the data with respect to minimizing least squares error.
Using the SVD, the truncated expression for zzz(((ttt))) with just k vectors in the new basis

can then be written as

ẑzz(((ttt jjj))) =
k

∑
i=1

σiv jiφφφ iii. (30)

Define the projection matrix PPP = ΦΦΦΦΦΦ
>. Define ÛUU such that the columns are the

non-zero eigenvectors in UUU that are not in ΦΦΦ . Thus, PPP⊥ = ÛUUÛUU
>

. We know that PPP is the
projection onto span{φ1, . . . ,φk} and PPP⊥ is the projection onto span{φk+1 . . .φm}.

We can derive the following upper bounds on the projections of xxx(((ttt jjj))) onto the two
subspaces, using the representation from Eq. (30).

∥∥PPPzzz(((ttt jjj)))
∥∥

2 =
∥∥ẑzz(((ttt jjj)))

∥∥
2 =

∥∥∥∥∥ k

∑
i=1

σiv jiφφφ iii

∥∥∥∥∥
2

=

√√√√ k

∑
i=1

(σiv jiφφφ iii)
2 =

√√√√ k

∑
i=1

(σiv ji)2 ≤ σ1

√√√√ k

∑
i=1

(v ji)2 ≤ σ1

(31)
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∥∥∥P⊥zzz(((ttt jjj)))
∥∥∥

2
=

∥∥∥∥∥m−k

∑
i=1

σi+kv j(i+k)φφφ iii

∥∥∥∥∥
2

=

√√√√m−k

∑
i=1

(σi+kv j(i+k)φφφ iii)
2 ≤ σk+1 (32)

.
In Eq. (31) and Eq. (32), σi and v ji are constants, and so (σiv jiφφφ iii)

2 = (σ2
i v2

jiφφφ
2
iii ).

Since φφφ iii are orthonormal, φφφ
2
iii = 1. σ1 ≥ σi for all i and can thus be factored out of the

summation term.
√

∑
k
i=1(v j(i+k))2 = vvv2

jjj = 1 from the definition of dot product and since
v j are orthonormal.

Given a function fff defining the dynamic process of interest, the POD approximation
is defined as

˙̂zzz(t) = PPP fff (ẑzz, t)

ẑ(0) = PPPzzz(0)
(33)

The exact solution is defined as

żzz(t) = (PPP+PPP⊥) fff (zzz, t)

zzz(0) = (PPP+PPP⊥)zzz(0)
(34)

The error between the exact solution and the POD approximation is defined as

ėee(t) = PPP( fff (xxx, t)− fff (ẑzz, t))+PPP⊥ fff (zzz, t)

eee(0) = PPP⊥zzz(0)
(35)

For fff differentiable, ẑzz is defined by Taylor’s Theorem

fff (zzz, t)− fff (ẑzz, t) =
∂ fff
∂ zzz

(ẑzz(t), t)eee(t) (36)

We can define a bound as

AAA(t) = PPP
∂ fff
∂ zzz

(ẑzz(t), t)

‖AAA(t)‖2 ≤ γ,∀t ∈ [0,T ]

(37)

Then, integrating the error Eq. (35)

eee(t) = PPP⊥zzz(0)+
∫ t

0
PPP( fff (zzz,s)− fff (ẑzz,s))+PPP⊥ fff (zzz,s)ds

= PPP⊥zzz(0)+
∫ t

0
AAA(s)eee(s)+PPP⊥ fff (zzz,s)ds

= PPP⊥zzz(0)+
∫ t

0
AAA(s)eee(s)ds+

∫ t

0
PPP⊥ fff (zzz,s)ds

(38)
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By evaluating
∫ t

0 PPP⊥ fff (zzz,s)ds, we have∫ t

0
PPP⊥ fff (zzz,s)ds =

∫ t

0
PPP⊥żzz(s)ds = PPP⊥(zzz(t)− zzz(0))

=⇒ eee(t) = PPP⊥zzz(0)+PPP⊥(zzz(t)− zzz(0))+
∫ t

0
AAA(s)eee(s)ds

= PPP⊥zzz(t)+
∫ t

0
AAA(s)eee(s)ds

(39)

We can bound the error using the following relations

‖eee(t)‖2 =

∥∥∥∥PPP⊥zzz(t)+
∫ t

0
AAA(s)eee(s)ds

∥∥∥∥
2

‖eee(t)‖2 ≤
∥∥∥PPP⊥zzz(t)

∥∥∥
2
+

∥∥∥∥∫ t

0
AAA(s)eee(s)ds

∥∥∥∥
2

‖eee(t)‖2 ≤
∥∥∥PPP⊥zzz(t)

∥∥∥
2
+
∫ t

0
‖AAA(s)eee(s)ds‖2

‖eee(t)‖2 ≤
∥∥∥PPP⊥zzz(t)

∥∥∥
2
+ γ

∫ t

0
‖eee(s)‖2 ds

(40)

Theorem 2. (Gronwall’s Theorem) Let α,β ,u be real-valued and defined on the in-
terval [a,b]. Assume β and u are continuous and α− is integrable on every closed and
bounded subinterval of [a,b]. If β ≥ 0 and u satisfies u(t)≤ α(t)+

∫ t
a β (s)u(s)ds, then

u(t)≤ α(t)+
∫ t

a α(s)β (s)exp(
∫ t

s β (r)dr)ds, t ∈ [a,b].

Applying Gronwall’s Theorem to Eq. (40)

u(t) = ‖eee(t)‖2 ,α(t) =
∥∥∥PPP⊥zzz(t)

∥∥∥
2
,β (t) = γ,

‖eee(t)‖2 ≤
∥∥∥PPP⊥zzz(t)

∥∥∥
2
+
∫ t

0

∥∥∥PPP⊥zzz(t)
∥∥∥

2
∗a∗ eγ(t−s)

‖eee(t)‖2 ≤ eγt max
t∈[0,T ]

∥∥∥PPP⊥zzz(t)
∥∥∥

2

(41)

The above bound does not take into account the construction of POD matrices,
namely how the snapshots are collected. Now, we will investigate the use of snapshot
matrix XXX = [zzz(t1), . . .zzz(tm)] with projection matrix PPP.

Using Lagrange interpolation

zzz(t) = zzz(ti)∗
t− ti+1

ti− ti+1
+ zzz(ti+1)

t− ti
ti+1− ti

+RRR(zzz(t)),

RRR(zzz(t)) =
(t− ti)(t− ti+1)

2
d2zzz(t)

dt2 =
(t− ti)(t− ti+1)

2
d fff (t)

dt

(42)

Multiplying by PPP⊥
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zzz(t) = zzz(ti)
t− ti+1

ti− ti+1
+ zzz(ti+1)

t− ti
ti+1− ti

+
(t− ti)(t− ti+1)

2
d fff (t)

dt

PPP⊥zzz(t) = PPP⊥zzz(ti)
t− ti+1

ti− ti+1
+PPP⊥zzz(ti+1)

t− ti
ti+1− ti

+PPP⊥
(t− ti)(t− ti+1)

2
d fff (t)

dt

(43)

For δ = ti+1− ti, maxt∈[ti,ti+1]|(t− ti)(t− ti+1)| = δ/4. We assume d fff (t)
dt ∈C(O,T )

and
∥∥∥ d fff (t)

dt

∥∥∥
2
≤ ξ . Taking the norm of both sides:

∥∥∥PPP⊥zzz(t)
∥∥∥

2
=

∥∥∥∥PPP⊥zzz(ti)
t− ti+1

ti− ti+1

∥∥∥∥
2
+

∥∥∥∥PPP⊥zzz(ti+1)
t− ti

ti+1− ti

∥∥∥∥
2
+

∥∥∥∥PPP⊥
(t− ti)(t− ti+1)

2
d fff (t)

dt

∥∥∥∥
2∥∥∥PPP⊥zzz(t)

∥∥∥
2
≤
∥∥∥PPP⊥zzz(ti)

∥∥∥
2
+
∥∥∥PPP⊥zzz(ti+1)

∥∥∥
2
+

δ 2

8

∥∥∥∥PPP⊥
d fff (t)

dt

∥∥∥∥
2

(44)
Using (32),

∥∥PPP⊥zzz(ti)
∥∥

2 ≤ σk+1 and
∥∥PPP⊥zzz(ti+1)

∥∥
2 ≤ σk+1

∥∥∥PPP⊥zzz(t)
∥∥∥

2
≤ 2σk+1 +

δ 2

8

∥∥∥PPP⊥
∥∥∥ξ (45)

Substituting into (41), with

‖eee(t)‖2 ≤ eγt(2σk+1 +
δ 2

8
ξ ) (46)

In the proposed method, we base our algorithm off of the following centralized
relationships for orthogonal iteration, used in computing a matrix of eigenvectors QQQ
and eigenvalues contained in the diagonals of RRR. For the design matrix XXX , we have

VVV = 1
m XXXXXXT QQQ = KKKQQQ, WWW =VVV TVVV , WWW

QR
= RRRT RRR, QQQ′ =VVV RRR−1.

For the decentralized implementation, we start with a matrix Q̂QQ, we compute V̂VV =
1
m XXXXXXT Q̂QQ. However, instead of V̂VV , for each robot, we have some V̂VV iii = V̂VV +EEEVVV

iii , since

V̂VV is estimated using the push-sum algorithm. Then, we compute ŴWW = V̂VV iii
TTT

V̂VV iii. Again,
instead of ŴWW , we have ŴWW iii = ŴWW +EEEWWW

iii .
We use the following relationships in the proofs below. First, we have that ‖VVV‖F =

‖RRR‖F and ‖VVV‖2 = ‖RRR‖2 since QQQ is orthonormal. For VVV =KKKQQQ, we use the submultiplica-
tivity of norms to get ‖VVV‖F ≤ ‖AAA‖F and ‖VVV‖2 ≤ ‖AAA‖2. Since WWW = RRRT RRR, ‖WWW‖ ≤ ‖RRR‖2

F
and ‖WWW‖ = ‖RRR‖2

2. From VVV = KKKQQQ and V̂VV iii = KKKQ̂QQ + EEEVVV
iii , we have that

∥∥VVV −V̂VV iii
∥∥

F ≤
‖KKK‖2

∥∥∥QQQ− Q̂QQ−EEEVVV
iii

∥∥∥
F

. In the proof, we assume that the quantity
∥∥∥QQQ− Q̂QQ−EEEVVV

iii

∥∥∥
F

is
bounded by a constant C.
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V̂VV iii =
1
m

XXXXXXT Q̂QQ+EEEVVV
iii∥∥VVV −V̂VV iii

∥∥
F ≤ ‖KKK‖2

∥∥∥QQQ− Q̂QQ−EEEVVV
iii

∥∥∥
F∥∥VVV −V̂VV iii

∥∥
F ≤C‖KKK‖2∥∥V̂VV iii

∥∥
2−‖VVV‖2 ≤C‖KKK‖2∥∥V̂VV iii
∥∥

2 ≤ (C+1)‖VVV‖2

(47)

We can define a bound on error of the matrix WWW as∥∥WWW −ŴWW
∥∥

F =
∥∥∥VVV TVVV −V̂VV

T
i V̂VV i

∥∥∥
F∥∥WWW −ŴWW

∥∥
F ≤

∥∥∥VVV TVVV −V̂VV
T
i VVV
∥∥∥

F
+
∥∥∥V̂VV T

i VVV −V̂VV
T
i V̂VV i

∥∥∥
F∥∥WWW −ŴWW

∥∥
F ≤ ‖VVV‖2

∥∥∥VVV T −V̂VV
T
i

∥∥∥
F
+
∥∥V̂VV i
∥∥

2

∥∥VVV −V̂VV i
∥∥

F∥∥WWW −ŴWW
∥∥

F ≤ (C+2)‖VVV‖2

∥∥VVV −V̂VV i
∥∥

F

(48)

Our choice of τ for the number of iterations of the push-sum algorithm, as in [28],
to ensure the bound on the error of the projection onto the space spanned by the eigen-
vectors allows us to establish the bound ‖VVV‖2

F ≤ k‖KKK‖2
2, where RRR ∈ Rk×k.

Next, we an establish the error incurred by estimating WWW through the decentralized
approach.∥∥WWW −ŴWW iii

∥∥
F =

∥∥WWW −ŴWW iii +ŴWW −ŴWW
∥∥

F

≤
∥∥WWW −ŴWW

∥∥
F +

∥∥∥EEEWWW
iii

∥∥∥
F

≤
∥∥WWW −ŴWW

∥∥
F +(C+1)2

εk‖KKK‖2
2

≤ (C+2)‖KKK‖2
2

∥∥∥QQQ− Q̂QQ−EEEVVV
iii

∥∥∥
F
+(C+1)2

εk‖KKK‖2
2

≤max{(C+2),(C+1)2}‖KKK‖2
2 ∗
(∥∥∥QQQ− Q̂QQ−EEEVVV

iii

∥∥∥
F
+ εk

)
(49)

Using the results presented in [3] and [28], we have that:∥∥RRR− R̂RRiii
∥∥

F ≤
∥∥WWW−1∥∥

2 ‖RRR‖2

∥∥ŴWW −ŴWW iii
∥∥

F

≤max{(C+2),(C+1)2}
∥∥RRR−1∥∥2

2 ‖KKK‖
3
2

(∥∥∥QQQ− Q̂QQ−EEEVVV
iii

∥∥∥
F
+ εk

) (50)

Applying Wedin’s Theorem [3], we have for invertible matrices RRR, R̂RRiii∥∥∥RRR−1− R̂RR
−1
iii

∥∥∥
2
≤ 1+

√
5

2

∥∥RRR− R̂RRiii
∥∥

2 max{
∥∥RRR−1∥∥2

2 ,
∥∥∥R̂RR
−1
iii

∥∥∥2

2
} (51)
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Then, applying (50) and (51)∥∥∥RRR−1− R̂RR
−1
iii

∥∥∥
2
≤
∥∥RRR−1∥∥2

2 ‖KKK‖
3
2

(∥∥∥QQQ− Q̂QQ−EEEVVV
iii
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)
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√
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2

∥∥RRR−1∥∥4
2

(∥∥∥QQQ− Q̂QQ−EEEVVV
iii

∥∥∥
F
+ εk

)
(52)

Using results from [28] related to analyzing the effects of the node on the matrix QQQ,
we have that:∥∥∥QQQ′− Q̂QQ

′′′
iii

∥∥∥
F
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(53)

This shows that the error is a factor of
√

k(C
∥∥RRR−1

∥∥
2 ‖KKK‖2)

4. We can calculate the

total error, defined as
∥∥∥(PPP+PPP⊥)−PPPQ̂QQiii

∥∥∥, using (53) and the analysis set forth in [28]:
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