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Extinction appears ubiquitously in many fields, including chemical reactions, population
biology, evolution and epidemiology. Even though extinction as a random process is a rare
event, its occurrence is observed in large finite populations. Extinction occurs when fluctu-
ations owing to random transitions act as an effective force that drives one or more
components or species to vanish. Although there are many random paths to an extinct
state, there is an optimal path that maximizes the probability to extinction. In this paper,
we show that the optimal path is associated with the dynamical systems idea of having maxi-
mum sensitive dependence to initial conditions. Using the equivalence between the sensitive
dependence and the path to extinction, we show that the dynamical systems picture of extinc-
tion evolves naturally towards the optimal path in several stochastic models of epidemics.

Keywords: extinction; optimal path; finite-time Lyapunov exponents
1. INTRODUCTION

Determining the conditions for epidemic extinction is
an important public health problem. Global eradication
of an infectious disease has rarely been achieved, but it
continues to be a public health goal for polio [1] and
many other diseases, including childhood diseases.
More commonly, disease extinction, or fade out, is
local and may be followed by a reintroduction of the dis-
ease from other regions [2,3]. Extinction may also occur
for individual strains of a multi-strain disease [4], such
as influenza or dengue fever. Since extinction occurs
in finite populations, it depends critically on local com-
munity size [5–8]. Moreover, it is important to know
how parameters affect the chance of extinction for pre-
dicting the dynamics of outbreaks and for developing
control strategies to promote epidemic extinction [9].
The determination of extinction risk is also of interest
in related fields, such as evolution and ecology. For
example, in the neutral theory of ecology, bio-diversity
arises from the interplay between the introduction and
extinction of species [10,11].

In general, extinction occurs in discrete, finite popu-
lations undergoing stochastic effects owing to random
transitions or perturbations. The origins of stochasticity
orrespondence (eric.forgoston@montclair.edu).
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may be internal to the system or may arise from the exter-
nal environment. Small population size, low contact
frequency for frequency-dependent transmission, compe-
tition for resources and evolutionary pressure [12], as
well as heterogeneity in populations and transmission
[13],mayall be determining factors for extinction to occur.

Extinction risk is affected by the nature and strength
of the noise [14], as well as other factors, including out-
break amplitude [15] and seasonal phase occurrence
[16]. For large populations, the intensity of internal
population noise is generally small. However, a rare,
large fluctuation can occur with non-zero probability
and the system may be able to reach the extinct state.
For respiratory diseases such as severe acute respiratory
syndrome (SARS), super-spreading may account for
these large stochastic fluctuations [17]. Since the extinct
state is absorbing owing to effective stochastic forces,
eventual extinction is guaranteed when there is no
source of reintroduction [18–20]. However, because
fade outs are usually rare events in large populations,
typical timescales for extinction may be extremely long.

Stochastic population models of finite populations,
which include extinction processes, are effectively
described using the master equation formalism. Sto-
chastic master equations are commonly used in
statistical physics when dealing with chemical reaction
processes [21] and predict probabilities of rare events
occurring at certain times. For many problems invol-
ving extinction in large populations, if the probability
This journal is q 2011 The Royal Society
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Figure 1. Probability density of extinction prehistory and the
optimal path to extinction for the stochastic SIR epidemiological
model. Colours indicate the probability density (the colour bar
values have been normalized, with lighter colours corresponding
to higher probability) for 20 000 stochastic realizations. The
results were computed using Monte Carlo simulations, and details
of the sampling of the trajectories are described in the text. The
curve is the numerically predicted optimal path to extinction.
Note that the optimal path to extinction lies on the peak of the
probability density of extinction prehistory. The population is
3� 106 individuals, with R0� 15 (contact rate b¼ 1500,
recovery rate g ¼ 100 and birth–death rate m¼ 0.2).
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distribution of the population is approximately station-
ary, the probability of extinction is a function that
decreases exponentially with increasing population
size. The exponent in this function scales as a determi-
nistic quantity called the action [22]. It can be shown
that a trajectory that brings the system to extinction
is very likely to lie along a most probable path called
the optimal extinction trajectory or optimal path. It is
a remarkable property that a deterministic quantity
such as the action can predict the probability of extinc-
tion, which is inherently a stochastic process [9,23].

Locating the optimal path is desirable because the
quantity of interest, the extinction rate, depends on
the probability to traverse this path, and the effect of
a control strategy on extinction rate can be determined
by its effect on the optimal path [9]. By employing an
optimal path formalism, we convert the stochastic pro-
blem to a mechanistic dynamical systems problem.
In contrast to approaches based on diffusive processes,
which are valid only in the limit of large system sizes
[24,25], this dynamical systems approach can give accu-
rate estimates for the extinction time even for small
populations if the action is sufficiently large. Addition-
ally, unlike other methods that are used to estimate
lifetimes, this approach enables one both to estimate life-
times and to draw conclusions about the path taken to
extinction. This more detailed understanding of how
extinction occurs may lead to new stochastic control
strategies [9].

In this paper, we show that locating the optimal
extinction trajectory can be achieved naturally by evol-
ving a dynamical system that converges to the optimal
path. The method is based on computing finite-time
Lyapunov exponents (FTLE), which have previously
been used to find coherent structures in fluid flows
[26–31]. The FTLE provides a measure of how sensi-
tively the system’s future behaviour depends on its
current state. We argue that the system displays maxi-
mum sensitivity near the optimal extinction trajectory,
which enables us to dynamically evolve towards the
optimal escape trajectory using FTLE calculations.
For several models of epidemics that contain internal
or external noise sources, we illustrate the power of
our method to locate optimal extinction trajectories.
Although our examples are taken from infectious dis-
ease models, the approach is general and is applicable
to any extinction process or escape process.
2. STOCHASTIC MODELLING IN THE
LARGE POPULATION LIMIT

To introduce our ideaof dynamically constructing an opti-
mal path to extinction in stochastic systems, we show
its application to a stochastic susceptible–infectious–
recovered (SIR) epidemiological model. Details of the
SIR model can be found in the electronic supplementary
material, §1. Figure 1 shows the probability density of
extinction prehistory in the susceptible–infectious (SI)
plane. The probability density was numerically computed
using 20 000 stochastic SIR trajectories that ended in
extinction. Trajectories are aligned at their extinction
point. From the extinction point, the prehistory of each
J. R. Soc. Interface
trajectory up to the last outbreak of infection is con-
sidered. Small fluctuations in the infectious population
are not considered in identifying the last outbreak. In
this way, we restrict the analysis to the interval between
the last large outbreak of infection and the extinction
point. The resulting (S,I) pairs of susceptible and infec-
tious individuals are then binned and plotted in the SI
plane [32]. The resulting discrete density has been colour
coded so that the brighter regions correspond to higher
density of trajectories. The figure shows that, among all
the paths that the stochastic system can take to reach
the extinct state, there is one path that has the highest
probability of occurring. This is the optimal path to
extinction.One can see that the optimal path to extinction
lies on the peak of the probability density of the extinction
prehistory. It should be noted that extinction for the
stochastic SIR model has been studied previously [33].

The optimal path can be obtained using methods of
statistical physics. In figure 1, the numerical prediction
of the entire optimal trajectory for the stochastic SIR
system has been overlaid on the probability density of
extinction prehistory that was found using stochastic
simulation. The trajectory spirals away from the ende-
mic state, with larger and larger oscillations until it
hits the extinct state. The agreement between the sto-
chastically simulated optimal path to extinction and
the predicted optimal path is excellent.

The curve of figure 1 is obtained by recasting the sto-
chastic problem in a deterministic form. The evolution
of the probability of finding a stochastic system in a
given state X at a given time t is described by the
master equation [34]. Solving the master equation
would provide a complete description of the time evol-
ution of the stochastic system, but in general it is a
difficult task to obtain explicit solutions for the
master equation. Thus, one generally resorts to approxi-
mations to the solution; i.e. one considers an ansatz for
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Figure 2. (a) Schematic showing the fixed points and heteroclinic trajectories (trajectories connecting fixed points). Coordinate
axes are dashed lines. The noise coordinate is indicated by the momentum ( p) coordinate. The deterministic manifold ( p ¼ 0) is
indicated in blue. Deterministically, the extinct state is repelling and endemic state is attracting. However, the endemic state has
unstable directions for non-zero noise ( p =0), and the optimal path (red) is the trajectory carrying the system from the endemic
state to a stochastic extinct state. (b) Schematic showing the path from the endemic state (blue) to the extinct state (red). The
optimal path leaves the endemic point along an unstable manifold, and connects to the extinct state along its stable manifold.
The magenta and green dashed lines represent trajectories initially separated by the optimal path. The initial starting distance
between trajectories near the endemic state expands exponentially in forward time (shown by the cyan lines). Locally, this shows
that the finite-time Lyapunov measure of sensitivity with respect to initial data is maximal along the optimal path.
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the probability density. In this case, since extinction
of finite populations is a rare event, we will be interested
in examining events that occur in the tail of the
probability distribution. Therefore, the distribution is
assumed to take the form:

rðX; tÞ � expð�NSðxÞÞ; ð2:1Þ

where r(X, t) is the probability density of finding the
system in the state X at time t, N is the size of the
population, x ¼X/N is the normalized state (e.g. in an
epidemic model, the fraction of the population in the var-
ious compartments), and S is a deterministic state
function known in classical physics as the action. Equation
(2.1) describes the relationship between the action and the
probability density and is based on an assumption for
how the probability scales with the population size. The
action is the negative of the natural log of the stationary
probability distribution divided by the population size.
Therefore, the probability (if we normalize the popu-
lation) is roughly given by the exponential of the action.
Intuitively, equation (2.1) expresses the assumption that
the probability of occurrence of extreme events, such as
extinction, lies in the tails of the probability distribution,
which falls steeply away from the steady state.

This approximation leads to a conserved quan-
tity that is called the Hamiltonian [35]. From the
Hamiltonian, one can find a set of conservative ordinary
differential equations (ODEs) that are known as
Hamilton’s equations. These ODEs describe the time
evolution of the system in terms of state variables x,
which are associated with the population in each com-
partment. For the SIR example, x is the vector
kS,I,Rl. In addition to the state variables, the equations
contain conjugate momenta variables, px. The conju-
gate momenta, or noise, account for the uncertainty
associated with the system being in a given state at a
given time owing to the stochastic interactions among
the individuals of the population. These ODEs can be
J. R. Soc. Interface
constructed from information in the master equation
about the possible transitions and transition rates in
the system. Details can be found in appendix A.

Integration of the ODEs with the appropriate bound-
ary conditions will then give the optimal evolution of the
system under the influence of the noise. Boundary
conditions are chosen to be fixed points of the system.
A typical case is shown schematically in figure 2a. Deter-
ministically, the endemic state is attracting and the
extinct state repelling. However, introducing stochasti-
city allows the system to leave the deterministic
manifold along an unstable direction of the endemic
state, corresponding to non-zero noise. Stochasticity
leads to an additional extinct state that arises owing to
the general non-Gaussian nature of the noise. For the
extinction process of figure 1, boundary conditions
were the system leaving the endemic steady state and
asymptotically approaching the stochastic extinct state.

In general, the optimal extinction path is an unstable
dynamical object, and this reflects extinction as a rare
event. This has led many authors to consider how
extinction rates scale with respect to a parameter
close to a bifurcation point [9,33,36,37], where the
dynamics are very slow. For an epidemic model, this
means that the reproductive rate R0 should be greater
than but very close to 1. However, most real diseases
have R0 larger than 1.5, which translates into a faster
growth rate from the extinct state. In general, in order
to obtain analytical scaling results, one must obtain the
ODEs for the optimal path either analytically (using
the classical theory of large fluctuations mentioned
within this section and described in detail in appendix
A) or numerically (using shooting methods for boundary
value problems). This task may be impossible or extre-
mely cumbersome, especially when the system is far
from the bifurcation point. In the following section, we
demonstrate how to evolve naturally to the optimal
path to extinction using a dynamical systems approach.

http://rsif.royalsocietypublishing.org/
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3. FINITE-TIME LYAPUNOV EXPONENTS

We consider a velocity field that is defined over a finite
time interval and is given by Hamilton’s equations of
motion. Such a velocity field, when starting from an
initial condition, has a unique solution. The continuous
dynamical system has quantities, known as Lyapunov
exponents, which are associated with the trajectory of
the system in an infinite time limit, and which measure
the average growth rates of the linearized dynamics
about the trajectory. To find the FTLE, one computes
the Lyapunov exponents on a restricted finite time inter-
val. For each initial condition, the exponents provide a
measure of their sensitivity to small perturbations.
Therefore, the FTLE is a measure of the local sensitivity
to initial data. Details regarding the FTLE can be found
in the electronic supplementary material, §2.

The FTLE measurements can be shown to exhibit
‘ridges’ of local maxima. The ridges of the field indicate
the location of attracting (backward time FTLE field)
and repelling (forward time FTLE field) structures. In
two-dimensional space, the ridge is a curve, which
locally maximizes the FTLE field so that transverse to
the ridge one finds the FTLE to be a local maximum.
What is remarkable is that the FTLE ridges correspond
to the optimal path trajectories, which we heuristically
argue in the electronic supplementary material, §3. The
basic idea is that since the optimal path is inherently
unstable, the FTLE shows that, locally, the path is
also the most sensitive to initial data. Figure 2b shows
a schematic that demonstrates why the optimal path
has a local maximum to sensitivity. If one chooses an
initial point on either side of the path near the endemic
state, the two trajectories will separate exponentially
in time. This is due to the fact that both extinct and
endemic states are unstable, and the connecting trajec-
tory defining the path is unstable as well. Any initial
points starting near the optimal path will leave the
neighbourhood in short time.
4. EVOLVING TOWARDS THE OPTIMAL
PATH USING FINITE-TIME LYAPUNOV
EXPONENTS

We now apply our theory of dynamical sensitivity to
the problem of locating optimal paths to extinction
for several examples. We consider the case of internal
fluctuations, where the noise is not known a priori, as
well as the case of external noise. In each case, the inter-
action of the noise and state of the system begins by
finding the equations of motion that describe the
unstable flow. These equations of motion are then used
to compute the ridges corresponding to maximum
FTLE, which in turn correspond to the optimal
extinction paths [38].
4.1. Extinction in a branching–annihilation
process

For an example of a system with internal fluctuations,
which has an analytical solution, consider extinction
J. R. Soc. Interface
in the stochastic branching–annihilation process

A!l 2A and 2A!m ;; ð4:1Þ

where l and m . 0 are constant reaction rates [39,40].
Equation (4.1) is a single species birth–death process
and can be thought of as a simplified form of the Verhulst
logistic model for population growth [41]. The mean field
equation for the average number of individuals n in the
infinite population limit is given by _n ¼ ln � mn2. The
stochastic process given by equation (4.1) contains
intrinsic noise that arises from the randomness of
the reactions and the fact that the population consists
of discrete individuals. This intrinsic noise can generate
a rare sequence of events that causes the system to
evolve to the extinct state. The probability Pn(t) to
observe, at time t, n individuals is governed by the
master equation

_Pn ¼
m

2
½ðn þ 2Þðn þ 1ÞPnþ2 � nðn � 1ÞPn�

þ l½ðn � 1ÞPn�1 � nPn�: ð4:2Þ

The Hamiltonian associated with this system is

Hðq; pÞ ¼ lð1þ pÞ � m

2
ð2þ pÞq

� �
qp; ð4:3Þ

where q is a conjugate coordinate related to n through a
transformation [40], and p plays the role of the momen-
tum. The equations of motion are given by

_q ¼ @H
@p
¼ q½lð1þ 2pÞ � mð1þ pÞq� ð4:4aÞ

and

_p ¼ � @H
@q
¼ p½mð2þ pÞq � lð1þ pÞ�: ð4:4bÞ

The mean field is retrieved in equation (4.4a) when p ¼
0 (no fluctuations or noise). The Hamiltonian has three
zero-energy curves. The first is the mean-field zero-
energy line p ¼ 0 (no fluctuations), which contains
two unstable points h1 ¼ ( p,q) ¼ (0,l/m) and h0 ¼

( p,q) ¼ (0,0). The second is the extinction line q ¼ 0
(trivial solution), which contains another unstable
point h2 ¼ ( p,q) ¼ (21,0). The third zero-energy
curve is non-trivial and is

q ¼ 2lð1þ pÞ
mð2þ pÞ : ð4:5Þ

The segment of the curve given by equation (4.5),
which lies between 21 � p � 0 corresponds to a (het-
eroclinic) trajectory that exits, at t ¼ 21, the point
h1 along its unstable manifold and enters, at t ¼1,
the point h2 along its stable manifold. This trajectory
is the optimal path to extinction and describes the
most probable sequence of events, which evolves the
system from a quasi-stationary state to extinction [40].

To show that the FTLE evolves to the optimal path,
we calculate the FTLE field using the system of Hamil-
ton’s equations given by equations (4.4a,b). Figure 3a
shows both the forward and backward FTLE plot com-
puted for the finite time T ¼ 6, with l ¼ 2.0 and m ¼
0.5. In this example, as well as the following two

http://rsif.royalsocietypublishing.org/
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Figure 3. (a) Forward and backward FTLE flow fields for the branching–annihilation process computed using the Hamiltonian
given by equation (4.3) with l ¼ 2.0 and m ¼ 0.5. The integration time is T ¼ 6 with an integration step size of t ¼ 0.1 and a grid
resolution of 0.01 in both q and p (momentum). The three zero-energy curves are given by the ridges of maximal FTLE and are
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flow fields for the SIS epidemic model with external fluctuations. The flow fields were computed using the Lagrangian given by
equation (4.9) with b ¼ 5.0 and k ¼ m þ g ¼ 1.0. The integration time is T ¼ 5 with an integration step size of t ¼ 0.1 and a grid
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Optimal path to extinction I. B. Schwartz et al. 5

 on May 17, 2011rsif.royalsocietypublishing.orgDownloaded from 
examples, T was chosen to be sufficiently large so that
one obtains a measurable exponential separation of tra-
jectories. In figure 3a, one can see that the optimal path
to extinction is given by the ridge associated with the
maximum FTLE. In fact, by overlaying the forward
and backward FTLE fields, one can see all three zero-
energy curves including the optimal path to extinction.
Also shown in figure 3a are the analytical solutions to
the three zero-energy curves given by p ¼ 0, q ¼ 0 and
equation (4.5). There is excellent agreement between
the analytical solutions of all three curves and the
ridges that are found through numerical computation
of the FTLE flow fields.

It is possible to compute analytically the action
along the optimal path for a range of l/m values.
Using equation (4.5), it is easy to show that the
action S is

S ¼ 2ð1� ln 2Þ l
m
: ð4:6Þ

It is clear from equation (4.6) that the action scales
linearly with l/m.
4.2. Susceptible–infectious–susceptible
epidemic model: external fluctuations

We now consider the well-known problem of extinction
in a susceptible–infectious–susceptible (SIS) epidemio-
logical model, which is a core model for the basis of
many recurrent epidemics. The SIS model is described
by the following system of equations:

_S ¼ m� mS þ gI � bIS ð4:7aÞ

and

_I ¼ �ðmþ gÞI þ bIS ; ð4:7bÞ

where m denotes a constant birth and death rate, b

represents the contact rate and g denotes the recovery
rate. Assuming the total population size is constant
J. R. Soc. Interface
and can be normalized to S þ I ¼ 1, then equations
(4.7a,b) can be rewritten as the following one-
dimensional process for the fraction of infectious
individuals in the population:

_I ¼ �ðmþ gÞI þ bI ð1� I Þ: ð4:8Þ

The stochastic version of equation (4.8) is given as

_I ¼ �ðmþ gÞI þ bI ð1� I Þ þ shðtÞ
¼ FðI Þ þ shðtÞ; ð4:9Þ

where h(t) is uncorrelated Gaussian noise with zero
mean and s is the standard deviation of the noise inten-
sity. The noise models random migration to and from
another population [15,36].

Equation (4.9) has two equilibrium points given by
I ¼ 0 (disease-free state) and I ¼ 1 2 (m þ g)/b (ende-
mic state). Using the Euler–Lagrange equation of
motion [42] from the Lagrangian determined by
equation (4.9) (LðI ; _I Þ ¼ ½hðtÞ�2 ¼ ½ _I � FðI Þ�2) along
with the boundary conditions given by the extinct
and endemic states, one finds that the optimal path to
extinction (as well as its counterpart path from the dis-
ease-free state to the endemic state) is given by
_I ¼+FðI Þ.

As in the first example, one can numerically compute
the optimal path to extinction using the FTLE.
Figure 3b shows the forward and backward FTLE
plot computed for T ¼ 5, with b ¼ 5.0 and k ¼ m þ
g ¼ 1.0. Note that we can consider the combination
m þ g since the Lagrangian depends only on the combi-
nation rather than on either parameter separately.
In figure 3b, one can see that the optimal path from
the endemic state to the disease-free state is given by
the ridge associated with the local maximum FTLE.
Also shown in figure 3b is the counterpart optimal
path from the disease-free state to the endemic state
(found by computing the backward FTLE field). In
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addition, the agreement with the analytical prediction
is excellent, as shown in figure 3b.

If one solves equation (4.9) for I(t) and substitutes
both I(t) and _I ðtÞ into the Lagrangian, then one can
analytically find an expression for the action along the
optimal path. The expression for the action is a function
of k and the reproductive number R0 and is given by

S ¼ 2kðR0 � 1Þ3

3R2
0

; ð4:10Þ

where R0 ¼ b/k.

0

0 0.2 0.4
I
0.6 0.8 1.0

Figure 4. FTLE flow field for the SIS epidemic model with
internal fluctuations computed using the Hamiltonian given
by equation (4.11) with b ¼ 2.0 and k ¼ m þ g ¼ 1.0. The
integration time is T ¼ 10 with an integration step size of
t ¼ 0.1 and a grid resolution of 0.005 in both I and p (momen-
tum). The optimal path to extinction is given by the ridge of
maximal FTLE.
4.3. Susceptible–infectious–susceptible
epidemic model: internal fluctuations

We next consider the one-dimensional stochastic ver-
sion of the SIS epidemic model for a finite population
with internal fluctuations using the transition rates
found in the electronic supplementary material, §4.
Using the formalism of Gang [35], one then has the
following Hamiltonian associated with this model:

H ðI ;pÞ¼ ðmþgÞI ðe�p�1ÞþbI ð1� I Þðep�1Þ; ð4:11Þ

where I is the fraction of infectious individuals and p is
the momentum. Internal fluctuations arise from the
random interactions of the population. Although there
is no analytical solution for the optimal path to extinc-
tion, we can once again determine the optimal path by
computing the FTLE flow field associated with this
system. Figure 4 shows the forward FTLE plot
computed using Hamilton’s equation of motion for
T ¼ 10, with b ¼ 2.0 and k ¼ m þ g ¼ 1.0, and as in
previous examples, the optimal path to extinction
from the endemic state to the disease-free state is appar-
ent. Note that the non-zero momentum corresponding
to the extinct state qualitatively agrees with similar
boundary conditions found in Dykman et al. [9] and is
associated with non-zero probability flux.

Once again, it is possible to compute the action along
the optimal path for a range of values of the reproductive
number R0. In contrast to the prior two examples, here
the action must be computed numerically. Moreover,
even the optimal path must be found numerically using
the FTLE plot generated for each value of R0.

Given an R0, we computed the forward FTLE flow
field using a grid resolution of 0.005 in both position
and momentum space. To find the optimal path corre-
sponding to the ridge of maximal FTLE values, we let
the deterministic, endemic steady state be the starting
point z0 of the path. Then a second point z1 on the
path was found by locating the maximum of the FTLE
values in an arc of radius 20 grid points spanning
nearly p radians for negative momentum values and
originating at z0. Subsequent points znþ1 were found by
taking the maximum FTLE value on an arc of radius
10 grid points spanning nearly p radians originating at
the most recent point zn and centred around the vector
zn 2 zn21 until the extinction line was reached. The com-
plete optimal path was estimated from the zn using cubic
spline interpolation. Once the optimal path had been
found, the action was computed by numerically integrat-
ing the Lagrangian along this path.
J. R. Soc. Interface
Figure 5a shows the numerically computed action
versus reproductive number over the range 1.1� R0 � 20.
The inset of figure 5a shows the portion of figure 5a
from 1.1 � R0 � 2. Also shown in the inset of
figure 5a is an analytical, asymptotic scaling result
that is valid for values of R0 close to unity. As can be
see in figure 5a, there is a good agreement between
the numerically computed action and the analytically
computed action near R0 ¼ 1. Details of the derivation
of the analytical scaling law can be found in the
electronic supplementary material, §5.

Figure 5b shows the numerically simulated mean
extinction time versus reproductive number for the
one-dimensional stochastic SIS model for a finite popu-
lation (see §4.3). Also shown in figure 5b is the
analytical prediction found using the previously men-
tioned scaling law derived for values of R0 close to
unity. As one can see, the agreement is excellent.
5. CONCLUSIONS

In all of the examples of §4, we have shown that the opti-
mal path to extinction is equated with having a (locally)
maximal sensitivity to initial conditions. Even though
many possible paths to extinction exist, the dynamical
systems approach converges to the path that maximizes
extinction. The parameter values chosen for the three
examples are such that the extinct and endemic states
are far away from each other. Therefore, in general,
there will be no possible approximate analytical treat-
ment as performed in Dykman et al. [9]. In addition,
we have shown how to constructively compute numeri-
cally the action for a wide range of reproductive
numbers. Our method allows for the computation of
extinction times and can be extended to high-
dimensional problems.

Because the method is general, and unifies dynami-
cal systems theory with the probability of extinction,
we expect that any system found in other fields can be
understood using this approach. Indeed, in problems

http://rsif.royalsocietypublishing.org/
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Figure 5. (a) Numerically computed action (integrated along the optimal path found numerically from the FTLE flow field)
versus reproductive number R0 for the SIS epidemic model with internal fluctuations. The inset shows a portion of the graph
near R0 ¼ 1. The numerically computed action is given by the black points, while the dashed curve shows an asymptotic scaling
result that is valid near R0 ¼ 1, and is given by S(R0) ¼ (R0 2 1)2/[R0 (1 þ R0)] (see the electronic supplementary material,
§5). (b) Numerically simulated (solid curve with black points) mean extinction time versus reproductive number for the SIS epi-
demic model with internal noise and the analytical prediction (dashed curve) found using the asymptotic scaling law that is valid
near R0 ¼ 1.

Optimal path to extinction I. B. Schwartz et al. 7

 on May 17, 2011rsif.royalsocietypublishing.orgDownloaded from 
of general extinction, it is now possible to evolve natu-
rally to the optimal path, and thus predict the path
that maximizes the probability to extinction. Future
work in this area will include improved sampling
methods to find the optimal path more efficiently in
higher dimensional models. Specific applications of
optimal path location in the future will include spatio-
temporal extinction processes such as those that occur
in pre-vaccine measles [7,43] and multi-strain extinction
in diseases such as dengue [44].

Finally, the optimal path method may lead to novel
monitoring and control strategies. In one biological
application, knowledge of the most probable path to
extinction may help with monitoring an environment
and with providing an estimate of the likelihood of
extinction based on where the population lies relative
to the path. It is known that once a trajectory has left
the neighbourhood of the endemic state, most paths
to extinction occur near the optimal path. This
phenomenon can be seen in figure 1, where the optimal
path lies on the peak of the probability density of
extinction prehistory. Therefore, the optimal path pro-
vides a good location to monitor the system for
possible extinction events. Furthermore, although the
momenta (noise effects) are not directly observable, it
may be possible to infer them dynamically [45] from
time series data of observable quantities in conjunction
with the equations for the time evolution of position
and momentum variables. Knowledge of where a
system lies in position-momentum space could provide
an estimate for how quickly a desired epidemic extinc-
tion could occur or could provide the risk of extinction
for a species one wishes to conserve.

In yet another application, knowledge of the optimal
path to extinction has the advantage that, in the pres-
ence of noise (that is estimated from data) and a known
population of infectious individuals, it may be possible
to develop better vaccine controls that reduce the
time to extinction. Figure 2a shows a schematic of the
path to extinction, where the extinct state is a saddle
with stable and unstable directions. For many epidemic
J. R. Soc. Interface
models, the extinct state can be shown to have a similar
geometry of stable and unstable directions. An approach
to the extinct state on the optimal path will lead to the
fastest time to extinction. Moreover, since the extinct
state has a saddle structure in the presence of noise, it
may be controlled with projection methods [46,47] or
probabilistic techniques [48].

One can consider instituting a method of parameter
control, where the parameters could be vaccine levels or
treatment of infectious individuals. Combined with the
monitoring techniques mentioned above, the control
method will allow one to move an existing state that
deviates from the optimal path closer to the optimal
path as time evolves. By adjusting the parameters, we
may target the stable directions of the path when we
are close to epidemic extinction [46]. Comparing obser-
vations with model predictions of the optimal path
allow us to use controls to minimize the time to
extinction.
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the Army Research Office and the National Institutes of
Health. I.B.S and L.B.S. are supported by Award Number
R01GM090204 from the National Institute Of General
Medical Sciences. The content is solely the responsibility of
the authors and does not necessarily represent the official
views of the National Institute of General Medical Sciences
or the National Institutes of Health. We also gratefully
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APPENDIX A. THEORY OF LARGE
FLUCTUATIONS

Letting N denote the population size, the state variables
X [ Rn of the system describe the components of a
population, while the random state transitions, which
govern the dynamics are described by the transition
rates W(X,r), where r [ Rn is an increment in the
change of X. In the large population limit without
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any fluctuations, the mean field equations are given by
the system _X ¼

P
r rW ðX; rÞ.

Consideration of the net change in increments of the
state of the system results in the following master
equation for the probability density r(X,t) of finding
the system in state X at time t:

@rðX; tÞ
@t

¼
X

r

½W ðX � r; rÞrðX � r; tÞ

�W ðX; rÞrðX; tÞ�: ðA 1Þ

The solution to the master equation (A 1) has a peak
around a stable steady state in the limit of large popu-
lation (N� 1) with width / N1/2 [9,23]. However, since
we are interested in the probability of extinction, we will
consider the tail of the distribution, which gives the
probability of having a small number of individuals.
The tail of the distribution can be obtained by employ-
ing the ansatz given by equation (2.1), which is an
assumption for how the probability density scales
with population size [9,22,49]. Equation (2.1) also
implies that a maximum in the extinction probability
can be found minimizing the action over a set of extinc-
tion paths starting from the stable endemic state. The
assumption of this functional form for r allows the
action to be derived from properties of the master
equation.

The density, r(X,t), can be found by substituting
the ansatz given by equation (2.1) into the master
equation. The resulting equations for the action are
given by the Hamilton–Jacobi equation for a
Hamiltonian, H, given by @S/@t þ H(x,@S/@x;t) ¼ 0,
where we have normalized the population components
and rates, respectively, as x ¼X/N, w(x,r) ¼
W(X,r)/N.

Following the classical mechanics convention, define
a conjugate momentum to the state space, x, by letting
p ¼ @S/@x and where H(x,p;t) is the classical Hamil-
tonian [22]. The Hamiltonian, H, depends both on the
state of the system, x, as well as the momentum, p,
which provides an effective force owing to stochastic
fluctuations on the system. The Hamiltonian equations
of motion provide trajectories in time of x(t) and p(t),
and as such, describe a set of paths going from an initial
point at time ti to some final point at time tf in (x,p)
space. For a given path, the action is given by
S ¼

Ð tf
ti

pðtÞ _xðtÞdt, and as such determines the expo-
nent of the probability of observing that path. (It
should be noted that instead of using the Hamiltonian
representation, one could use the Lagrangian represen-
tation Lðx; _x; tÞ ¼ �Hðx;p; tÞ þ _x � p, which results in
an equivalent solution.)

The action reveals much information about the prob-
ability evolution of the system, from scaling near
bifurcation points in non-Gaussian processes to rates
of extinction as a function of epidemiological par-
ameters [9,49]. As already stated, in order to
maximize the probability of extinction, one must mini-
mize the action S. The minimizing formulation entails
finding the solution to the Hamilton–Jacobi equation,
which means that one must solve the 2n-dimensional
system of Hamilton’s equations [ _x ¼ @pHðx;pÞ,
J. R. Soc. Interface
_p ¼ �@xH ðx;pÞ] for x and p, where the Hamiltonian
is explicitly given as

H ðx;p; tÞ ¼
X

r

wðx; rÞ½expðprÞ � 1�: ðA 2Þ

The appropriate boundary conditions of the system
are such that a solution starts at a non-zero state,
such as an endemic state, and asymptotically
approaches one or more zero components of the state
vector, representing a disease-free state. Therefore, a
trajectory that is a solution to the two-point boundary
value problem determines a path, which in turn yields
the probability of going from the initial state to the
final state. The optimal path to extinction is the path
that minimizes the action in either the Hamiltonian or
Lagrangian representation.

We compute the trajectory satisfying the Hamil-
tonian system that has as its asymptotic limits in
time the endemic state as t!21 and the extinct
state as t !þ1. The momentum p represents the
force of the fluctuations on the population, and this
momentum changes the stability of the equilibrium
points. Both the endemic and extinct states have
attracting and repelling directions for p = 0, as shown
schematically in figure 2.

Given optimal path trajectories (x(t), p(t)), the action
with correct limits is found by SðxÞ ¼

Ð1

�1
p _x dt [42].
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