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A zoonotic disease is a disease that can be passed from animals to humans.

Zoonotic viruses may adapt to a human host eventually becoming endemic

in humans, but before doing so punctuated outbreaks of the zoonotic virus

may be observed. The Ebola virus disease (EVD) is an example of such a dis-

ease. The animal population in which the disease agent is able to reproduce in

sufficient number to be able to transmit to a susceptible human host is called a

reservoir. There is little work devoted to understanding stochastic population

dynamics in the presence of a reservoir, specifically the phenomena of disease

extinction and reintroduction. Here, we build a stochastic EVD model and

explicitly consider the impacts of an animal reservoir on the disease persist-

ence. Our modelling approach enables the analysis of invasion and fade-out

dynamics, including the efficacy of possible intervention strategies. We inves-

tigate outbreak vulnerability and the probability of local extinction and

quantify the effective basic reproduction number. We also consider the effects

of dynamic population size. Our results provide an improved understanding

of outbreak and extinction dynamics in zoonotic diseases, such as EVD.
1. Introduction
The Ebola virus disease (EVD) is an infectious zoonosis found in several mam-

mals, including humans, bats and apes. A zoonosis is a disease that can be

naturally transmitted from animals to humans. If there is a non-human disease

carrier, we call that species a disease reservoir. Strong evidence for an Ebola

virus reservoir can be seen in the invasion/extinction cycles that have taken

place over the 40 years of recorded EVD history in humans. The first known

spillover of EVD into the human population took place in Zaire (now the

Democratic Republic of the Congo) near the Ebola River from which the disease

took its name. Major EVD epidemics have taken place in the Democratic Repub-

lic of the Congo, Gabon, Sudan, Uganda, and most recently in Guinea, Sierra

Leone and Liberia. Although the disease was first recognized and has been pri-

marily located in Central Africa, the most recent epidemic has been taking place

along the continent’s western coast.

Unlike non-zoonotic diseases, EVD goes through long periods of global

extinction in the human population. These EVD-free periods are punctuated

by seemingly spontaneous disease reintroduction, which suggests infection

from a non-human source. Additionally, there is a large body of work in the

biological and ecological sciences providing evidence that the virus is main-

tained in animal populations [1,2]. Thus, the seemingly spontaneous

reappearance of the disease in the human population must be understood in

the context of unpredictable interactions between humans and animal carriers

of the disease. Although they are random in nature, researchers are working

to improve our understanding of these interactions [3,4].

The EVD is transmitted via bodily fluids such as blood, saliva, semen and

breast milk, and is very deadly in both humans and apes, with an average
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mortality rate of 50% in humans. Depending on the viral strain,

the disease may kill as much as 90% of an affected human

population [5]. When the disease is transferred from the

animal reservoir into the human population it is known as a

spillover event. Although EVD has a relatively difficult time

invading and persisting in a human population, there have

been over half a dozen spillover events with more than 100

infected individuals since 1976, when the disease was initially

recognized in Zaire (now the Democratic Republic of Congo).

The Centers for Disease Control and Prevention (CDC) in the

USA estimates over 28 000 infections and over 11 000 deaths

in the most recent West African epidemic [6]. As of March

2016, the epidemic is under control with small on-going flare-

ups that are likely to continue to occur for the immediate future.

From a modelling perspective, considering an estimated

disease incubation time of 7–21 days, a deterministic suscep-

tible–exposed–infectious–recovered (SEIR) compartmental

model is appropriate to investigate the dynamics [7–9]. Exten-

sions have been proposed to account for various kinds of

intervention [10] or, as in the case of gravity models, to

account for the spread of EVD over an explicit spatial region.

In a gravity model, the force of infection from a non-

contiguous population will be proportional to the size of the

respective populations, and inversely proportional to the

square of the distance between the two populations [11,12].

Studies that explicitly consider the dynamics of EVD

while in the presence of a zoonotic reservoir are less

common. Although the zoonotic reservoir for Ebola is still a

matter of contention among researchers, bats make for a

likely suspect [1,2]. It is known that non-human primates

are sometimes involved in the spread of EVD to humans as

intermediate susceptible hosts [3]. Accounting for human

exposure to the reservoir is paramount for the study of

disease introduction. However, disease extinction and

reintroduction are rare stochastic events that cannot be

captured by deterministic models.

Therefore, the goal of this paper is to present a stochastic

model that explicitly accounts for both the introduction of

EVD from the zoonotic reservoir as well as the fade-out

periods. Perturbations of this work can be used to assess the
efficacy of disease control strategies such as vaccination and

quarantine. Additionally, the work supports the use of the

basic reproduction number while quantifying outbreak vulner-

ability in populations weakly coupled to a disease reservoir.

Although this paper focuses on EVD, the results are broadly

relevant to outbreak and extinction in zoonotic diseases.
2. Material and methods
In this paper, we extend a previously adopted compartmental

model for EVD with intervention [10] to a stochastic model

that captures the internal random dynamics of a population.

Figure 1 shows the division of the population into the following

six classes:

(1) Susceptible class S consists of individuals who may become

infected with EVD through contact with an infectious indi-

vidual, a hospitalized individual, or a deceased but

unburied individual.

(2) Exposed class E consists of individuals who are infected with

EVD but are not yet infectious.

(3) Infectious class I consists of individuals who are capable of

transmitting EVD to a susceptible individual.

(4) Recovered class R consists of individuals who have recovered

from EVD.

(5) Deceased class D consists of deceased and unburied individ-

uals who are capable of transmitting EVD to a susceptible

individual.

(6) Hospitalized class H consists of individuals who have been

hospitalized and are capable of transmitting EVD to a sus-

ceptible individual. In our model, we assume that

individuals who die while in the hospitalized class are

immediately buried.

Figure 1 also shows the interactions among these population

classes. Note that EVD transmission can occur through both

infectious human contact and the animal reservoir. We assume

that contact with the animal reservoir is always possible, and

independent of the ratio of animal carriers to humans.

The model we study is an extension of an SEIR model.

Besides explicit consideration of the reservoir, the model includes

two additional classes: hospitalized and deceased. We note that



Table 1. The transition events and their associated transition rates for the
stochastic EVD model. Each transition involves the movement of a single
individual between classes. The classes are represented by the following
variables: S ¼ susceptible, E ¼ exposed, I ¼ infectious, R ¼ recovered,
H ¼ hospitalized and D ¼ deceased. The average population size is N.

event transition rate

healthy birth Ø! S m N

EVD transmission

(human)

S ! E (biI þ bdDþ bhHÞ S
N

EVD transmission

(animal)

S ! E k S

latency to infectious E ! I s E

recovery I ! R gir I

EVD death I ! D me I

hospitalization I ! H t I

burial D ! Ø d D

death from hospital H ! Ø me H

recovery from

hospital

H ! R ghr H

natural death fS, E, I, D, H, Rg
! Ø

mfS, E, I, D, H, Rg

Table 2. The parameter values used in the stochastic EVD model, as
reported in [10].

description parameter value

1/host life span (and birth rate) m 0.00005 d21

contact rate for infectious bi 0.5 d21

contact rate for deceased bd 0.6 d21

contact rate for hospitalized bh 0.00016 d21

1/latency period s 0.1 d21

1/recovery period (no hospital) gir 0.07 d21

death rate from EVD me 0.12 d21

1/mean time to hospitalization t 0.2 d21

1/burial time d 0.33 d21

1/recovery period (hospital) ghr 0.10 d21

reservoir transmission k 5 � 1029 d21
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this model (without a reservoir) has been used in previous

studies [9,10]. The hospitalized and deceased compartments

account for important routes of disease transmission which are

specific to EVD. Additionally, these routes provide a way to

investigate the usefulness of practical intervention through

the rate of hospitalization and fast access to a safe burial.

The effectiveness of practical intervention strategies can be

monitored through these parameters, together with variations

in contact rates.

The model captures movement between the classes as sto-

chastic transitions that occur at specified transition rates. Each

of these transitions represents a random event that can occur in

a population. Table 1 quantifies the possible transition events

and associated rates, which follow the figure 1 flow diagram.

In the master equation approach to stochastic modelling, these

transition rates are used as coefficients that define the probability

of each respective transition event [13,14]. Assuming some dis-

crete period of time during which exactly one of the

aforementioned events takes place, the probability that a particu-
lar event will be the one that does take place is equal to its own

transition rate divided by the sum of all transition rates. The sto-

chastic simulations reported on in this paper use these transitions

in a Monte Carlo algorithm as described in [15].

The parameter values we use for EVD are given in table 2. With

the exception of k, the parameters are as reported in [10]. The value

ofkdefines the probability of an infection from the animal reservoir.

The approximate range for k can be calculated by dividing the

number of outbreak events by the time over which those outbreaks

took place and then dividing by the population size. This gives an

approximate range for k between 1029 and 1026.

In both the earlier and the more recent EVD outbreaks in

Africa, the virus has been reported to have relatively low infec-

tivity [8,16]. A common metric for infectivity of a disease is the

basic reproduction number, R0, which is defined as the average

number of infections that a single infectious individual will trig-

ger in a fully susceptible population. R0 can be described more

roughly as the ratio between the inflow of infected individuals
and the outflow of dead or recovered individuals in a fully sus-

ceptible population. If the inflow is greater than the outflow, then

R0 . 1, and the disease will spread. If the outflow is greater than

the inflow, then R0 , 1, and the disease will go extinct. For con-

text, the reproductive number for measles may be as high as

R0 ¼ 18 and the reproductive number for influenza is R0 � 4.

The reproductive number for EVD is estimated to be approxi-

mately R0 � 2 [8,16]. The parameters in table 2 agree with this

estimation.

If the transitions between states are short and uncorrelated

and we assume the population is well mixed, the system is a

Markov process and the evolution of the probability is described

by a master equation [13,14]. We assume that the population is

large and the WKB (Wentzel–Kramers–Brillouin) approximation

for the probability distribution in the scaled master equation can

be used [17–21]. By performing a Taylor series expansion on this

equation, one arrives at the leading-order Hamilton–Jacobi

equation for which the stochastic dynamics are captured in

the conjugate momentum variables. This statistical mechanics

approach to the problem naturally leads to the associated Ham-

iltonian and Hamilton’s equations, which doubles the dimension

of the problem but recasts it as a deterministic system of non-

linear differential equations that is useful to analyse the

dynamics of the original stochastic system [22–24]. The master

equation and Hamiltonian for the stochastic EVD model are

provided in appendix A.

The standard approach to analysing the dynamics of a sto-

chastic system such as this is to start with the mean-field

equations (provided in appendix B). This is done by assuming

a value of zero for the conjugate momentum variables in Hamil-

ton’s equations. This reduced system captures the deterministic

dynamics, which is the limit of the stochastic dynamics in the

large population limit. Full analysis of the mean-field equations

for the EVD model reveals dynamics similar to lower dimen-

sional SEIR systems in the literature [7]. Two steady states of

the mean-field equations can be derived analytically. If we

assume no reservoir transmission (k ¼ 0), the first steady state

can be described as the disease-free equilibrium (DFE), for

which the entire population is susceptible and no infection is pre-

sent. This state is stable if the basic reproduction number satisfies

R0 , 1, implying that the disease cannot persist in the population

and all solutions will limit to the DFE. If R0 . 1, the DFE is

unstable and the disease will persist. In other words, if EVD is

introduced into a system having R0 . 1, solutions will tend to

an endemic steady state, implying non-zero values for the

infected and infectious classes.
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Figure 2. A measure of outbreak vulnerability as a function of the reservoir
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number of cases of EVD over a sample of 105 days. All parameters are set to
the values in table 2 except k, which is noted in each graph.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160847

4
By introducing reservoir transmission (k . 0), the traditional

DFE no longer exists as a small number of exposed individuals

are introduced to the system. Therefore, in addition to the tra-

ditional endemic state, there is another steady state that we call

the invasion state that has a small number of non-susceptible

individuals. While this deterministic system cannot exhibit

periods of disease fade-out and re-invasion, its steady states pro-

vide guidance in understanding the dynamics of the full

stochastic system. The existence of the invasion state depends

on the force of infection from the animal reservoir, and we will

see that it plays an important role in outbreak vulnerability.

Another advantage of analysing the mean-field equations is

the ability to approximate the basic reproduction number.

Using the next-generation matrix as described in [25] and

assuming no reservoir transmission (k ¼ 0), we use the DFE to

analytically determine

R0 ¼
sðbi þ bdme=ðdþ mÞ þ bht=ðghr þ me þ mÞÞ

ðgir þ tþ me þ mÞðmþ sÞ , ð2:1Þ

which quantifies whether EVD can persist in the population. The

derivation for the basic reproduction number is provided in

appendix C. Because the reservoir transmission is small, this

quantity provides a good approximation of the ability for the dis-

ease to persist when randomly introduced. Intervention methods

can also be evaluated by how they decrease this value, with an

aim of R0 , 1.
3. Results
Real-world data for EVD suggest that the basic reproduction

rate is greater than one, but the disease dynamics cannot be

captured by deterministic models with solutions that simply

limit to a steady state. The stochastic EVD model allows behav-

iour beyond the dynamics predicted by the mean-field

equations. Examples include solutions that switch steady

states, resembling disease outbreak (invasion) and fade-out

(extinction) events. In particular, we are interested in the

effect of a transmission reservoir in these dynamics.

3.1. Invasion
We begin by discussing outbreak vulnerability in the stochas-

tic EVD model, which describes the invasion dynamics after

an infected individual is introduced into a population having

few or no infections. The random introduction would occur

through the transmission reservoir, quantified by the par-

ameter k. While the larger infrequent outbreaks would

result in an under-prepared and overwhelmed healthcare

system, the impact of long, sustained outbreaks would be

more taxing on a population. Assessing the outbreak vulner-

ability of a specific population and the effectiveness of

possible intervention strategies would help prepare health-

care workers and possibly prevent a breakdown of the

system during an outbreak.

Representative time series for several reservoir trans-

mission rates using EVD parameters are presented in the

inlay of figure 2. If there is very low transmission from the

reservoir and most of the population is susceptible, the sol-

ution will exhibit large outbreaks, or spillover events,

spread out in time so that there are long disease-free periods.

This behaviour is represented by the green time series in the

inlay of figure 2. If the transmission rate from the reservoir is

high, then the solution oscillates about a non-zero steady

state and there are few if any disease-free periods. This be-

haviour is represented by the red time series in the inlay of
figure 2. The colour bar at the bottom of figure 2 shows the

values for k exhibiting these dynamics and how a combi-

nation of these two green and red extremes is exhibited by

solutions for transmission rates in between. The orange

time series in the inlay is presented as a representative

example.

We measure the outbreak vulnerability of the system by

finding the average proportion of disease-free time during a

sample of 1000 stochastic simulations. Details regarding the

numerical simulations can be found in appendix D. The

results for EVD parameters as we vary k are presented in

figure 2. For populations with very weak connection to the

disease reservoir (small k), almost all of the time is spent dis-

ease free. As k increases, the disease-free time decreases at a

nearly exponential rate. We describe the periods of disease-

free time as disease fade-out and the decrease of fade-out is

associated with sustained outbreaks.

Both the contact rate with infected individuals (bi) and

the EVD burial rate (d) are important factors for a popu-

lation’s outbreak vulnerability and can change over the

course of an outbreak, as they relate to human behavioural

considerations that are likely to be affected by the spread of

information. One would assume that increasing d and

decreasing bi would be salient and practical strategies to

reduce outbreak vulnerability. The stochastic EVD model

can provide an estimate of how the outbreak vulnerability

changes with these prevention measures, allowing for the

assessment of how to achieve the maximum impact.

Figure 3 is a graph of the average proportion of disease-free

time in simulations of the EVD model as bi and d are

varied. These simulations follow the methodology described

for figure 2. As expected, low values for the contact rate and

high values for the burial rate have the most disease-free time

and least outbreak vulnerability. Overlaid as a dashed black

curve is R0 ¼ 1 for the mean-field EVD model without reser-

voir transmission, as described in equation (2.1). This curve is

the boundary between the basins for which the DFE and the

endemic steady states are stable in the mean-field EVD
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model. When R0 , 1, the DFE is stable for low values for the

contact rate and high values for the burial rate. We propose to

use the R0 ¼ 1 curve to approximate the boundary between

low and high outbreak vulnerability in the stochastic EVD

model with reservoir transmission. Therefore, it indicates

intervention strategies that target bi and d parameter values

for R0 , 1 (below the dashed line) which would have the

greatest benefit for the population.

3.2. Extinction
We continue with a discussion of how the stochastic EVD

model can exhibit periods of disease absence, or fade-out,

despite the fact that the basic reproduction rate is greater

than one. As we have noted in the previous section, outbreaks

can be quick and infrequent or sustained and frequent,

depending on outbreak vulnerability. This distinction describes

the two mechanisms that allow for a solution to reach a

disease-free state, which we consider an extinction event.

When the outbreak vulnerability is low, there are long dis-

ease-free periods in which the susceptible population

replenishes itself as the recovered individuals are naturally

removed. The small transmission rate from the reservoir has

a low probability of causing an outbreak, and finally, when

it happens, the susceptible compartment is the majority of

the population and the disease quickly spreads through the

group. Here, the mean-field model provides general insight

for the underlying dynamics exhibited by the stochastic

model. The stable endemic state (assuming R0 . 1) is a spiral

sink and solutions spiral in towards it in an anticlockwise

fashion when projected on the susceptible–infectious plane.

The initial conditions for the invasion are far from the endemic

state, which is stable but not strongly attracting (1 , R0 , 2).

Therefore, the solution will orbit the endemic state in a large

anticlockwise path (at a significant distance from the endemic

state), quickly reaching a disease-free state on the other side of

the orbit. The solution will remain disease free as the suscep-

tible population rebuilds and repeats the cycle. These

outbreaks are random, but, as shown in figure 3, the average
behaviour follows a continuous measure of disease-free time

that depends on the system parameters. It is worth mentioning

that the invasion steady state is small and does not seem to

play a significant role in these dynamics.

For large outbreak vulnerability, the invasion is a solution

that escapes the disease-free state and causes a large disease

outbreak. In this case, the solution is similar to what one

would expect from the deterministic mean-field equations.

What is unique about stochastic systems is that the small

random fluctuations allow escape from steady states, and in

simulations this will happen in finite time (although the time

may be exponentially long). To understand the mechanism

of escape, one can use Hamilton’s equations to identify the

quasi-stable steady states in the stochastic system, as well as

action-minimizing curves that provide a path from one

steady state to another. An action-minimizing curve identifies

the path that is probabilistically most likely to be taken during

a switching event. This trajectory is thus known as the optimal

path [19,23,26,27]. For the EVD model, the optimal path to

extinction is a curve in 12-dimensional space that connects

the endemic state to the invasion state.

Noting that k is much smaller than the other parameters in

table 2, solutions for the stochastic EVD model near the endemic

state can be approximated by assuming k ¼ 0. The exception is

during invasion events, when the reservoir brings the disease

back from extinction. Therefore, we set k ¼ 0 in an illustra-

tive example for computing the optimal path to extinction

and comparing it with extinction dynamics in simulations.

For this high-dimensional model, an analytic solution is

not tractable and we use numerical methods to approximate

the optimal path. We use the iterative action minimizing

method (IAMM) [28] to find 2400 points approximating the

12-dimensional optimal path of the stochastic EVD model,

with a maximum error of 2.4487 � 10210. Details regarding

the numerical simulations can be found in appendix

E. Figure 4 shows the resulting solution, starting at the ende-

mic state and spiralling out to the disease-free state. We verify

our result by comparing it with the probability density of

extinction prehistory in the susceptible–infectious plane.

The probability density was numerically computed using

10 000 simulations that ended in spontaneous extinction

(details in appendix D). Starting at the extinction point, the



2500

2000

1500

in
fe

ct
ed

1000

500

0
10 000

5000
exposed 0 5 × 106

5.4 × 106

5.8 × 106

6.2 × 106

susceptible

Figure 5. The projection of the numerically computed optimal path to
extinction on the analytically determined stochastic centre manifold. Details
for the computation are provided in the text. Parameter values are given in
table 2, with k ¼ 0.

5
susceptible/1000
infectious4

3

2

1

0 2 4 6
time (× 104 days)

8 10 12 14

pe
op

le
 (

×
10

4 )

Figure 6. A growing population increases outbreak vulnerability and allows
for sustained outbreaks. We show a sample time series with increasing popu-
lation size (birth rate m ¼ 9.5 � 1025 and k ¼ 1.8 � 1029), and a
starting population of N ¼ 106. The susceptible population has been
scaled by a factor of 1000 so that both the infectious and susceptible
time series can be clearly seen in the figure. Initially, the reservoir trans-
mission triggers large outbreaks and results in fast extinction events. As
the size of the population and the number of susceptible individuals
increases, infectious individuals tend to a dynamic endemic state with
sustained outbreaks. All other parameters are as in table 2.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160847

6

previous positions in state space for each trajectory are

binned and the frequency is plotted in the susceptible–

infectious plane in figure 4. The highest frequency regions

are shown in red in the density plot, and the optimal path

is overlaid. Figure 4 shows that, among all the paths the sto-

chastic system can take to reach the extinct state, there is one

path that has the highest probability of occurring. This opti-

mal path of extinction lies on the peak of the probability

density of the extinction prehistory.

Additional verification of the optimal path to extinction is

achieved by projecting the 12-dimensional optimal path onto

the lower-dimensional stochastic centre manifold shown in

figure 5. Since the stochastic EVD model is an SEIR-type

model, it is straightforward to compute the stochastic centre

manifold from the mean-field equations using techniques

developed in [29,30]. The stochastic centre manifold is the sur-

face on which the long-term dynamics of the stochastic system

will fall. Therefore, it follows that the approximation of the

optimal path should lie on this hyperplane. The entire set of

optimal path data and the centre manifold equation for the

stochastic EVD model are provided in appendix E.

Knowledge of the optimal path is also useful, because it

allows one to find the average time to travel from the endemic

state to the extinct state. We call this time the mean time to dis-

ease extinction (MTE). Since the optimal path can be used to

estimate the MTE it is useful for quantifying the efficacy of dis-

ease control such as vaccine and quarantine. In particular, an

effective disease control programme will shift the optimal

path in a way that decreases the MTE. Although this was not

computed for the stochastic EVD model, it is straightforward

both to track the extinction time during a simulation as well

as to compute an expected mean value based on the optimal

path. This will be a topic of future study.

For outbreak vulnerability parameters in between the two

extremes, the system may exhibit a combination of quick and

sustained outbreaks, sometimes using the optimal path to

escape from the endemic state. The MTE may provide insight

to the frequency of disease-free periods and may also provide

a measure of intervention effectiveness.

3.3. Dynamic population size
Currently, we account for births and deaths in such a way

that it is assumed that the stochastic EVD model retains a
mean population size. While population growth rates in

many African regions have declined steadily over time,

the overall growth in Africa remains a net positive, with

the population of many countries expected to double by the

year 2050 [31,32]. When the birth rate is greater than the

death rate, the total population will change in time. If we

allow for a dynamic population size in the model, then

both the endemic state and the basic reproduction rate

become dynamic. Higher birth rates increase the flow of sus-

ceptible individuals into the population, which increases the

probability of stochastic reintroduction and the force of

infection. Consequently, the likelihood of stochastic fade-

out decreases and the system is bound to transition to a

dynamic endemic state. This implies that, even for the subcri-

tical initial dynamic condition R0 , 1, a transition to endemic

disease circulation is likely. Moreover, it is dependent on

various measures including both k and birth rate. This

condition, when realized, may limit the impact of interven-

tion. We reserve the discussion of the linkage among these

effects to another publication. By maintaining the natural

death rate for all compartments at the value given in table

2, and increasing the birth rate to m ¼ 9.5 � 1025, one can

compute stochastic realizations of this dynamic process.

Details regarding the numerical simulations can be found

in appendix D. An example is shown in figure 6, where one

can see that there is a fundamental change in behaviour.

Initially, the population is relatively small and invasion

events are infrequent, as shown by the red curve. Later in

time, the inflow of susceptibles causes a shift to a persistent

but increasing endemic state. Outbreak vulnerability has

increased with population size, transitioning from infrequent

to sustained outbreaks.
4. Conclusion
The recent West African epidemic of EVD was a catastrophe

that resulted in a devastating loss of life. With its frighten-

ingly low survival rate, along with our apparent inability to

predict the disease introduction and trajectory, EVD poses a
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continuing threat. For any such zoonosis disease, prevention

prior to introduction is as important as disease control during

an outbreak, and so the disease must be taken as seriously

during its latent period as it is during an active period. In

this paper, we contend that EVD should be considered in a

stochastic framework and not as an entirely predictable deter-

ministic process. The study of zoonotic diseases benefits

particularly from the application of stochastic modell-

ing methods because of the unpredictable nature of the

human-to-reservoir interactions.

The optimal path to disease extinction is a minimal

action trajectory between an endemic and extinct state. This

path is the most likely route to disease extinction in the

presence of noise. The optimal path can therefore be used

to estimate the mean time to disease extinction, and as

a result may be used to quantitatively assess disease

control measures.

When a disease intervention strategy is adopted, it will

affect the optimal path and the expected time to disease

extinction. To determine an optimal intervention strategy,

one must quantitatively compare different possible control

methods. Control through an investigation of the optimal

path has been successfully adopted in biochemical network

dynamics [33]. The mean time to extinction, as determined

through the optimal path, is the quantitative metric that

should be used to determine the efficacy of a control

method. In particular, studying the relationship between

the optimal path and disease intervention may allow for

the optimal allocation of resources prior to or during an epi-

demic. For example, Khasin et al. [34] identified the resonant

effect of vaccination pulses in an SIR model and derived an

optimal vaccination protocol that can speed up extinction

when the vaccine is in short supply. Billings et al. [35] con-

sidered the effect of treatment for the SIS model, and

showed an exponential decrease in disease extinction times.

In the case of the EVD model considered in this paper,

the optimal path is a curve through 12-dimensional space,

and is found by solving a 12-dimensional system of differen-

tial equations. Knowledge of the optimal path to extinction

allows one to perturb our model to determine relative sensi-

tivity to changes in human behaviour and to disease control

strategies. With these tools, one could predict the relative

effectiveness of disease control measures. Given appro-

priate cost functions for the implementation of the different

control measures, one could minimize the mean time to

extinction given a finite set of resources, thus developing an

optimal strategy.

Once disease extinction has been achieved, then the Ebola

virus will only be found in non-human populations and an

understanding of the conditions for which invasion and

outbreak are most likely can help us to identify at-risk

populations. It can be seen using stochastic simulation tech-

niques that there are populations where long-lived endemic

states are very unlikely. This means that the disease may

invade consistently, but is always driven down to extinction in

a relatively short amount of time. Human behaviour as well as

the attributes of the disease can affect the vulnerability of a

population to outbreak. One way to quantify this risk is by

using the basic reproduction number from the associated deter-

ministic system. We have also observed that in a dynamic

population size model, where the birth rate is larger than the

death rate, the ability of the disease to invade into a population

is dependent on the size of the population.
Figure 3 shows that the basic reproduction number from the

deterministic system can be used as an indicator for stochastic

outbreak vulnerability. This fact allows one to extend important

conclusions from the investigation of deterministic systems to

more realistic stochastic systems. We show the intuitive con-

clusion that increasing the burial rate and decreasing the

contact rate will, ultimately, result in controlling the disease.

The frequencies that are reported in figure 3 show how the pres-

ence of the reservoir impacts the probability of controlling the

outbreak through standard intervention methods (self- or

forced isolation and safe removal of infected bodies), while

also affording information about which parameter may be

more appropriate to modify in order to decrease the impact of

the disease. It is worth noting that, in figure 3, the darker

orange coloration in the region of medium contact rates and

high burial rates is not a consequence of the model, but is

rather due to the population size and number of stochastic

realizations. An increase in either decreases the variance and

results in a smoother, more even coloration.

Since the size of the endemic state scales proportionally

with the size of the total population, larger populations

tend to be more susceptible to a long-lived endemic state

than smaller populations. Consider the number of infectious

individuals at the endemic state as given in appendix B. As

N increases, I increases proportionately. The deterministic

system can never escape from the stable endemic state,

regardless of how large or small the endemic state is. In the

stochastic formulation, however, the endemic state becomes

quasi-stable. This means that the natural variance of the sto-

chastic system can force a transition between the endemic and

extinct states. This favourable transition is less and less likely

to happen as the population size increases. In fact, the mean

time to stochastic extinction as a function of population size is

known to be exponential. Therefore, larger populations are

more likely to have a persistent disease after an invasion

event than are smaller populations. Figure 6 shows that, as

the population size increases over time, the risk for an ende-

mic disease state increases as well. This suggests that the risk

for disease invasion is particularly dynamic in developing

areas. Population growth is expected to continue for decades

in the developing world. The population of many African

countries is predicted to double by 2050 [31,32]. Figure 6

shows that even a population with an endemic state small

enough so that it will not be realized, but with a growing

population, may overcome a threshold and suddenly display

an endemic disease state after a long period of popula-

tion growth. Although it is not explicitly investigated here,

we hypothesize that a similar effect may be seen in an

increasingly interconnected and globalized region. In

theory, the phenomenon requires population growth, not

necessarily from an imbalance between the birth and death

rates. In the future, similar work should be done on a grid

of interconnected populations, and in this way both spatial

spread, which is not considered here, and increased

interconnectedness among populations can be investigated.
Authors’ contributions. G.T.N. and S.B. performed the initial development of
the model. All authors performed the analysis and participated in writ-
ing the manuscript. All authors gave final approval for publication.

Competing interests. We declare we have no competing interests.

Funding. G.T.N., L.B. and E.F. gratefully acknowledge support from the
National Science Foundation. G.T.N. and E.F. were supported by
National Science Foundation award CMMI-1233397. In addition,



rsif.royalsocietypub

8
G.T.N. thanks the IBM Almaden Research Center Intern Program for
funding.

Acknowledgements. This material is based upon work carried out while
L.B. was serving at the National Science Foundation. G.T.N. thanks
Kun Hu for useful discussions.

Disclaimer. Any opinion, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.
lishing.org
J.R.Soc.Interface

14:20160847
Appendix A. Master equation and Hamiltonian
The six classes for the stochastic EVD model are represented

by the following variables: S ¼ susceptible, E ¼ exposed, I ¼
infectious, R ¼ recovered, H ¼ hospitalized and D ¼
deceased. The general form of the master equation as

described by the transitions in table 1 is

drðXÞ
dt
¼mNðrðS�1,E,I,D,H,RÞ�rðS,E,I,D,H,RÞÞ

þbiI
N
ððSþ1ÞrðSþ1,E�1,I,D,H,RÞ�SrðS,E,I,D,H,RÞÞ

þbdD
N
ððSþ1ÞrðSþ1,E�1,I,D,H,RÞ�SrðS,E,I,D,H,RÞÞ

þbhH
N
ððSþ1ÞrðSþ1,E�1,I,D,H,RÞ�SrðS,E,I,D,H,RÞÞ

þkððSþ1ÞrðSþ1,E�1,I,D,H,RÞ�SrðS,E,I,D,H,RÞÞ
þmððSþ1ÞrðSþ1,E,I,D,H,RÞ�SrðS,E,I,D,H,RÞÞ
þmððEþ1ÞrðS,Eþ1,I,D,H,RÞ�ErðS,E,I,D,H,RÞÞ
þsððEþ1ÞrðS,Eþ1,I�1,D,H,RÞ�ErðS,E,I,D,H,RÞÞ
þmððIþ1ÞrðS,E,Iþ1,D,H,RÞ� IrðS,E,I,D,H,RÞÞ
þtððIþ1ÞrðS,E,Iþ1,D,H�1,RÞ� IrðS,E,I,D,H,RÞÞ
þmeððIþ1ÞrðS,E,Iþ1,D�1,H,RÞ� IrðS,E,I,D,H,RÞÞ
þgirððIþ1ÞrðS,E,Iþ1,D,H,R�1Þ� IrðS,E,I,D,H,RÞÞ
þðmþdÞððDþ1ÞrðS,E,I,Dþ1,H,RÞ�DrðS,E,I,D,H,RÞÞ
þðmþmeÞððHþ1ÞrðS,E,I,D,Hþ1,RÞ�HrðS,E,I,D,H,RÞÞ
þghrððHþ1ÞrðS,E,I,D,Hþ1,R�1Þ�HrðS,E,I,D,H,RÞÞ
þmððRþ1ÞrðS,E,I,D,H,Rþ1Þ�RrðS,E,I,D,H,RÞÞ,

ðA 1Þ

where X ¼[S,E,I,D,H,R]T.

We scale the variables by the average population size as

follows: xS ¼ S/N, xE ¼ E/N, xI ¼ I/N, xD ¼ D/N, xH ¼ H/

N, and xR ¼ R/N. The Hamiltonian for the stochastic EVD

model using the WKB approximation is

H ¼mðeps�1ÞþðbdxDxSþbhxHxSþbixIxSþkxSÞðeð�pSþpEÞ�1Þ
þmxSðe�pS�1ÞþmxEðe�pE�1ÞþsxEðeð�pEþpI Þ�1Þ
þmxIðe�pI�1ÞþmexIðeð�pIþpDÞ�1ÞþgirxIðeð�pIþpRÞ�1Þ
þtxIðeð�pIþpHÞ�1ÞþðmþdÞxDðe�pD�1ÞþmxRðe�pR�1Þ
þðmþmeÞxHðe�pH�1ÞþghrxHðeð�pHþpRÞ�1Þ:

ðA2Þ

The associated Hamilton’s equations are found by the

relations:

dxS

dt
¼ @H
@pS

,
dxE

dt
¼ @H
@pE

,
dxI

dt
¼ @H
@pI

,

dxD

dt
¼ @H
@pD

,
dxH

dt
¼ @H
@pH

,
dxR

dt
¼ @H
@pR

,

dpS

dt
¼ � @H

@xS
,

dpE

dt
¼ � @H

@xE
,

dpI

dt
¼ � @H

@xI

and
dpD

dt
¼ � @H

@xD
,

dpH

dt
¼ � @H

@xH
,

dpR

dt
¼ � @H

@xR
:

9>>>>>>>>>>>=>>>>>>>>>>>;
ðA 3Þ
The full equations for the EVD model are

dxS

dt
¼ me pS � ðbdxD þ bhxH þ bixI þ kÞxSe�pSþpE � mxSe�pS ,

ðA 4aÞ
dxE

dt
¼ ðbdxD þ bhxH þ bixI þ kÞxSe�pSþpE

� sxEe�pEþpI � mxEe�pE , ðA 4bÞ
dxI

dt
¼ sxEe�pEþpI � mexIe�pIþpD � girxIe�pIþpR � txIe�pIþpH

� mxIe�pI , ðA 4cÞ
dxD

dt
¼ mexIe�pIþpD � ðmþ dÞxDe�pD , ðA 4dÞ

dxH

dt
¼ txIe�pIþpH � ghrxHe�pHþpR � ðmþ meÞxHe�pH , ðA 4eÞ

dxR

dt
¼ girxIe�pIþpR þ ghrxHe�pHþpR � mxRe�pR , ðA 4fÞ

dpS

dt
¼ �ðbdxD þ bhxH þ bixI þ kÞðe�pSþpE � 1Þ

� mðe�pS � 1Þ, ðA 4gÞ
dpE

dt
¼ �sðe�pEþpI � 1Þ � mðe�pE � 1Þ, ðA 4hÞ

dpI

dt
¼ �bixSðe�pSþpE � 1Þ � meðe�pIþpD � 1Þ � girðe�pIþpR � 1Þ

� tðe�pIþpH � 1Þ � mðe�pI � 1Þ, ðA 4iÞ
dpD

dt
¼ �bdxSðe�pSþpE � 1Þ � ðmþ dÞðe�pD � 1Þ, ðA 4jÞ

dpH

dt
¼ �bhxSðe�pSþpE � 1Þ � ghrðe�pHþpR � 1Þ

� ðmþ meÞðe�pH � 1Þ ðA 4kÞ

and

dpR

dt
¼ �mðe�pR � 1Þ: ðA 4lÞ
Appendix B. Mean-field equations
To find the mean-field equations for the stochastic EVD

model, one must evaluate the following partial derivatives

of the Hamiltonian with the conjugate momentum variables

set to zero (noted by p ¼ 0):

dxS

dt
¼ @H
@pS

����
p¼0

dxE

dt
¼ @H
@pE

����
p¼0

dxI

dt
¼ @H
@pI

����
p¼0

and
dxD

dt
¼ @H
@pD

����
p¼0

dxH

dt
¼ @H
@pH

����
p¼0

dxR

dt
¼ @H
@pR

����
p¼0

:

9>>>=>>>;
ðB 1Þ

The deterministic mean-field dynamics are given by the

following equations:

dxS

dt
¼ m� bixIxS � bdxDxS � bhxHxS � mxS � kxS, ðB 2aÞ

dxE

dt
¼ bixIxS þ bdxDxS þ bhxHxS � ðmþ sÞxE þ kxS, ðB 2bÞ

dxI

dt
¼ sxE � ðgir þ me þ tþ mÞxI , ðB 2cÞ

dxD

dt
¼ mexI � ðdþ mÞxD, ðB 2dÞ

dxH

dt
¼ txI � ðghr þ me þ mÞxH ðB 2eÞ
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and

dxR

dt
¼ girxI þ ghrxH � mxR: ðB 2fÞ

Setting the deterministic mean-field equations to zero

allows one to find the two steady states of the system in

terms of the exposed variable. The exposed class value for

the endemic state is

xðeÞE ¼
m

2R0ðmþ sÞ R0 � 1� k

m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 � 1� k

m

� �2

þ 4R0k

m

s0@ 1A
ðB 3Þ

and the exposed class value for the invasion state is

xðiÞE ¼
m

2R0ðmþ sÞ R0 � 1� k

m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 � 1� k

m

� �2

þ 4R0k

m

s0@ 1A:
ðB 4Þ

Note that R0 is the basic reproduction number whose defi-

nition and derivation is provided in appendix C. The values

for the remaining variables of the steady states can be deter-

mined using the following relationships:

xðe, iÞ
S ¼ 1� 1þ s

m

� �
xðe, iÞ

E ðB 5Þ

xðe, iÞ
I ¼ s

ðgir þ tþ me þ mÞ x
ðe, iÞ
E , ðB 6Þ

xðe, iÞ
D ¼ sme

ðgir þ tþ me þ mÞðdþ mÞ x
ðe, iÞ
E , ðB 7Þ

xðe, iÞ
H ¼ st

ðgir þ tþ me þ mÞðghr þ me þ mÞ x
ðe, iÞ
E ðB 8Þ

and

xðe, iÞ
R ¼ s

mðgir þ tþ me þ mÞ gir þ
ghrt

ðghr þ me þ mÞ

� �
xðe, iÞ

E :

ðB 9Þ

It is worth noting that if there is no transmission from the

reservoir, or k ¼ 0, the form of the steady states for the

exposed class simplifies to

xðeÞE ¼
ð1� 1=R0Þ

1þ s=m
and xðiÞE ¼ 0: ðB 10Þ

We refer to the solution associated with xE
(i) as the DFE:

ðxðiÞS , xðiÞE , xðiÞI , xðiÞD , xðiÞH , xðiÞR Þ ¼ ð1, 0, 0, 0, 0, 0Þ: ðB 11Þ
Appendix C. Next-generation matrix and R0
For deterministic systems, the basic reproduction number R0

can be found explicitly using the next-generation matrix [25].

When k . 0, the DFE does not exist so we proceed by assum-

ing k ¼ 0. We rewrite the mean-field equations (equation (B

2)) using the vector X ¼ ½xS, xE, xI , xD, xH , xR�T, so that the

new infections are separated from the other changes in the

population using the form _X ¼ F̂ðXÞ � V̂ðXÞ, with

bF ¼
0

bixIxS þ bdxDxS þ bhxHxS
0
0
0
0

26666664

37777775 ðC 1Þ
and

� bV ¼
m� bixIxS � bdxDxS � bhxHxS � mxS

�ðmþ sÞxE
sxE � ðgir þ me þ tþ mÞxI

mexI � ðdþ mÞxD
txI � ðghr þ me þ mÞxH
girxI þ ghrxH � mxR

26666664

37777775: ðC 2Þ

We can reduce the system to the classes that have

disease transmission using Y ¼ ðxE, xI , xD, xHÞ and defining
_Y ¼ FðXÞ � VðXÞ, with

F ¼

bixIxS þ bdxDxS þ bhxHxS
0
0
0

2664
3775 ðC 3Þ

and

� V ¼

�ðmþ sÞxE
sxE � ðgir þ me þ tþ mÞxI

mexI � ðdþ mÞxD
txI � ðghr þ me þ mÞxH

2664
3775: ðC 4Þ

The vector F represents all new infectives, and the vector

V is the negative of the remaining terms in the system.

We evaluate the Jacobian matrices of F and V at the DFE,

called F and V, respectively. We then evaluate FV21, known

as the next-generation matrix. Note that this expression cap-

tures the ratio between the inflow and an outflow from the

infected classes in terms of matrix operations. The basic

reproduction number is defined as the spectral radius (largest

eigenvalue) of FV21:

R0 ¼
sðbi þ bdme=ðdþ mÞ þ bht=ðghr þ me þ mÞÞ

ðgir þ tþ me þ mÞðmþ sÞ : ðC 5Þ
Appendix D. Numerical simulations
Large collections of stochastic realizations, known as stochas-

tic ensembles, were used to create figures 2–4. Each

individual stochastic realization represents a possible disease

trajectory and is produced using a type of Monte Carlo

method [15]. The algorithm uses a random number generator

to determine which event will occur as well as the time of

occurrence. During each random time step exactly one

event occurs. The probability of any particular event taking

place is equal to its own transition rate divided by the sum

of all transition rates. In the case of figure 6, the Spatiotem-

poral Epidemiological Modeler (STEM) was used. Different

from all of the other simulations where the natural birth

rate (m) was equal to the natural death rate (m), the creation

of figure 6 involved setting the birth rate higher than the

death rate so that mbirth . mdeath. This is the mechanism that

allows for an increasing population. Details of the numerical

code can be found at http://wiki.eclipse.org/Ebola_Models.

The deterministic mean-field formulation of the EVD system

given by equations (B 2) is solved using the Matlab Runge–

Kutta solver ode45. Note that equations (B 2) are written in

terms of the scaled variables ðxS, xE, xI , xD, xH , xRÞ. The scaled

variables are the original variables (S, E, I, D, H, R) scaled by the

average population size N. For the parameters given in table

2, the steady-state solutions are quite small. In particular, the

endemic state of ðxS, xE, xI , xD, xH , xRÞ � ð0:543, 2:228� 10�4,

5:85� 10�5, 2:13� 10�5, 5:32� 10�5, 0:188Þ corresponds to

http://wiki.eclipse.org/Ebola_Models
http://wiki.eclipse.org/Ebola_Models
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Figure 7. The parameters are given in table 2, with the exception of k ¼ 0. Each set of 2400 blue points represent the numerical approximation of the optimal
path to extinction found by the IAMM. The maximum error for this set is 2.4487 � 10210. The red star represents the location of the endemic state (left starting
point) and the green star represents the location of the extinct state (right-end point). (Online version in colour.)
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ðS, E, I, D, H, RÞ � ð54 300, 223, 58, 21, 53, 18 800Þ for a popu-

lation of N ¼ 100 000 individuals. The reproductive number

R0 � 1.84 agrees well with the value expected based on the lit-

erature, as was discussed in §2. Details of the numerical code

can be found at https://www.eclipse.org/forums/index.

php/t/1083337/.
Appendix E. Optimal extinction path
To analyse the dynamics of spontaneous escape from an

endemic state, we numerically compute the optimal path,

which is a zero-energy curve for the Hamiltonian that con-

nects two steady-state saddle points. We use the IAMM

https://www.eclipse.org/forums/index.php/t/1083337/
https://www.eclipse.org/forums/index.php/t/1083337/
https://www.eclipse.org/forums/index.php/t/1083337/
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[28], a numerical scheme based on Newton’s method. The

IAMM is useful in the general situation where a path connect-

ing steady states Ca and Cb starts at Ca at t ¼ �1 and ends at

Cb at t ¼ þ1. A time parameter t exists such that

�1 < t < 1. For this method, we require a numerical

approximation of the time needed to leave the region of Ca

and arrive in the region of Cb. Therefore, we define a time

Te such that �1 < �Te < t < Te < 1. Additionally,

Cð�TeÞ � Ca and CðTeÞ � Cb. In other words, the solution

stays very near the equilibrium Ca for �1 < t � �Te, has a

transition region from �Te < t < Te, and then stays near Cb

for Te < t < þ1. The interval ½�Te, Te� is discretized into n
segments using a uniform step size h ¼ ð2TeÞ=n or a suitable

non-uniform step size hk. The corresponding time series is

tkþ1 ¼ tk þ hk.

The derivative of the function value qk is approximated

using central finite differences by the operator dh given as

d

dt
qk � dhqk ;

h2
k�1qkþ1 þ ðh2

k � h2
k�1Þqk � h2

kqk�1

hk�1h2
k þ hkh2

k�1

,

k ¼ 0, . . . ,n:

ðE 1Þ

Clearly, if a uniform step size is chosen, then equation (E 1)

simplifies to the familiar form given as

d

dt
qk � dhqk ;

qkþ1 � qk�1

2h
, k ¼ 0, . . . ,n: ðE 2Þ

Thus, one can develop the system of nonlinear algebraic

equations

dhxk �
@Hðxk,pkÞ

@p
¼ 0 and dhpk þ

@Hðxk,pkÞ
@x

¼ 0,

k ¼ 0, . . . ,n, ðE 3Þ

which is solved using a general Newton’s method. We let

qjðx,pÞ ¼ fx1,j . . . xn,j, p1,j . . . pn,jg
T ðE 4Þ

be an extended vector of 2nN components that contains the

jth Newton iterate, where N is the number of populations.
When j ¼ 0, q0ðx, pÞ provides the initial ‘guess’ as to the

location of the path that connects Ca and Cb. Given the jth
Newton iterate qj, the new qjþ1 iterate is found by solving

the linear system

q jþ1 ¼ qj �
FðqjÞ
JðqjÞ

, ðE 5Þ

where F is the function defined by equation (E 3) acting on qj,

and J is the Jacobian. Equation (E 5) is solved using lower

upper (LU) decomposition with partial pivoting.

Because the endemic state of the mean field for the

parameters in table 2 is a spiral sink, one must use a con-

tinuation method to find the optimal path. This is done by

picking a large value of m that results in an R0 close to

but larger than one, which decreases the frequency of

the oscillations about the endemic state. Therefore, the

optimal path can be found using an initial condition of

a straight line connecting the endpoints. By slowly

decreasing the value of m and using the previous optimal

path as the initial condition, one can repeat the process to

find the optimal path at the desired parameter values.

In figure 7, we present the entire set of data for the

optimal extinction path for a stochastic EVD system

shown in figure 4.

Additional verification of our numerically computed opti-

mal path is achieved by projecting the 12-dimensional

optimal path onto the lower dimensional stochastic centre

manifold shown in figure 5. Since the EVD model is an

SEIR-type model, it is straightforward to compute the

stochastic centre manifold using techniques developed in

[29,30]. The stochastic centre manifold is characterized by

the dimensionally reduced equation

xI ¼
sðxE � xðeÞE Þ

ðgir þ tþ me þ mÞ þ xðeÞI : ðE 6Þ
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