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In this article, we take a mathematical approach to the study of population-
level disease spread, performing a quantitative and qualitative investigation
of an SISκ model which is a susceptible-infectious-susceptible (SIS) model
with exposure to an external disease reservoir. The external reservoir is
non-dynamic, and exposure from the external reservoir is assumed to be
proportional to the size of the susceptible population. The full stochastic
system is modelled using a master equation formalism. A constant popu-
lation size assumption allows us to solve for the stationary probability
distribution, which is then used to investigate the predicted disease preva-
lence under a variety of conditions. By using this approach, we quantify
outbreak vulnerability by performing the sensitivity analysis of disease
prevalence to changing population characteristics. In addition, the shape
of the probability density function is used to understand where, in par-
ameter space, there is a transition from disease free, to disease present,
and to a disease endemic system state. Finally, we use Kullback–Leibler
divergence to compare our semi-analytical results for the SISκ model
with more complex susceptible-infectious-recovered (SIR) and susceptible-
exposed-infectious-recovered (SEIR) models.
1. Introduction
Throughout history, human populations have been subjected to infectious dis-
eases which reside in reservoirs external to the population. When a susceptible
human comes into contact with the reservoir, it is possible for the disease to be
transmitted from the reservoir to the individual, with possible ongoing trans-
mission of the disease throughout the human population. These reservoirs
may be animal based [1] or environmentally based (plants, water sources,
soil or air) [2,3]. Recent zoonotic diseases which have arisen from reservoirs
include West Nile fever [4], SARS [5], Ebola virus disease [6] and COVID-19 [7].

Our ability to anticipate and react to novel infectious diseases requires that we
build modelling frameworks to better understand the outbreak and spread of
infectious disease. A wide array of mathematical modelling approaches has
been developed specifically for studying infectious diseases [8–10]. The foun-
dation of many of these modelling approaches is based on constructing
deterministic compartmental models that typically consist of ordinary or partial
differential equations. The analysis of the models can provide the basic reproduc-
tion number, which enables one to determine if a system can support a stable
endemic state, along with other useful quantitative and qualitative observations.

The basic reproduction number, R0, is used to gauge the infectiousness
of a disease and can also be used to determine whether a disease will be self-
sustaining. The formal definition of the basic reproduction number is the
number of secondary infections that are generated on average by a single infec-
tious individual in an otherwise fully susceptible population. In the absence of
an external source of disease, an R0 greater than one suggests that the disease
will spread, while an R0 less than one indicates that the disease will die out.
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In a deterministic disease model such as a standard suscep-
tible-infectious-susceptible (SIS) model, R0 describes the
stability of the disease-free equilibrium (DFE). For R0 > 1, the
DFE is unstable, while for R0 < 1, the DFE is stable. A stable
DFE generally corresponds to deterministic disease extinction.

The inclusion of infections from the disease reservoir
removes the DFE, and therefore, R0 can no longer be inter-
preted in the same strict mathematical way. It has previously
been shown that for populations connected weakly to a reser-
voir, the R0 of the deterministic mean-field model can be used
as an indicator of outbreak vulnerability for the associated sto-
chastic model [11]. For the SISκ system with a very weak
connection to the disease reservoir, R0 for the SIS system
does a good job of indicating when a susceptible population
is most vulnerable to external disease invasion.

To properly understand disease introduction into a
population, we must account for human exposure through a
connection to the reservoir. However, disease introduction is
fundamentally a stochastic event that cannot be captured by
deterministic models. Although little work has been devoted
to understanding stochastic population dynamics in the
presence of a reservoir, one recent article discusses, among
other things, outbreak vulnerability to disease in the context of
Ebola virus disease [11]. Much of this work was computational
in nature. To better understand the vulnerability of populations
todisease outbreak, in this articlewe considera simplifiedmodel
with a connected reservoir so that themodel is analytically tract-
able. The analytical results presented later do in fact provide
insight into the numerical results of the Ebola virus disease
model [11], but additionally provide fundamental insight into
themechanismswhich underpin outbreak vulnerability in simi-
lar stochastic systems connected to a reservoir. The analytical
results of the SISκmodel allow one to build intuition regarding
disease invasion and how different parameters affect the type of
outbreak not only for SIS-type models but also for susceptible-
infectious-recovered (SIR)-type and susceptible-exposed-infec-
tious-recovered (SEIR)-type models (including the Ebola virus
model mentioned earlier which is of SEIR-type with additional
compartments for hospitalization and deceased individuals).
Moreover, the analytical results provide a technical foundation
and context for future data-driven studies.

When studying the introduction of disease into a popu-
lation, it is necessary to define how the population of
interest is divided. In the simplest case that we consider in
this article, there is one population (the reservoir) that har-
bours the disease, and there is another, separate population
to which the disease is introduced on occasion. Of course, if
the situation is such that the reservoir is introducing disease
at such a high rate that there is essentially no difference
between reservoir transmission and community transmission
within the non-reservoir population, then we could consider
these two connected sub-populations as a single population.

More generally, the approach to defining appropriate sub-
populations should be based on the specific scientific investi-
gation. In the mathematical study of disease spread, the
partitioning of human populations into distinct, well-mixed
and spatially non-explicit sub-populations is common practice
[8,12–14] and has been used to study a variety of epidemiolo-
gical problems. For instance, it is useful to study vaccination
optimization strategies in explicitly connected metapopulation
models [15]. For the study of global disease extinction or the
spread of disease between human populations, it is necessary
to consider multiple separate sub-populations [16,17].
However, in general, there is a noted lack of rigorous study
when it comes to determining how a population should be
divided into the appropriate sub-populations.

To develop effective disease intervention strategies, we
must be able to quantify how disease is spread from one popu-
lation to another. To perform the latter analysis, we must
improve our understanding of how different populations are
connected to one another. Although this sounds quite straight-
forward, it is known that some populations are more closely
linked through their behaviour than their proximity. For
instance, it has been shown that under vaccination, synchrony
of measles outbreaks in geographically close metapopulations
has become irregular [18]. Moreover, geographically distant
populations may be synchronous. For example, two cities
with major air travel hubs may have enough population
mixing so that an infectious disease outbreak occurs in both
nearly simultaneously.

In this article, we investigate the introduction and
persistence behaviour of an infectious disease in a completely
susceptible population from an external source; this encroach-
ment is called disease invasion. We take a basic and generic
approach to the investigation of disease invasion by consider-
ing a simple, but novel, mathematical model for the case of a
sub-population connected to a disease reservoir. We define
the disease-susceptible population using an SISκ model, a
non-standard SIS model that includes a term which accounts
for exposure from an external source (the reservoir). The dis-
ease is not self-sustaining within the population, and so the
primary source of infection is exposure to the external disease
reservoir. The vulnerability of the population to disease intro-
duction and sustained disease presence, termed outbreak
vulnerability, is investigated both qualitatively and quantitat-
ively. We determine the probability distribution for the
infected class in the most simple one-dimensional SISκ case
and show the extent to which it can be informative for more
complex systems by comparing our closed-form solution for
the SISκ system with more complicated SIR and SEIRmodels.
2. Methods
2.1. SISκ deterministic model
Before considering the full stochastic system, we investigate the
mean field dynamics of the SISκ system. The SISκ ordinary
differential equations model, including infection from the
external disease reservoir, is given as follows:

dS
dt

¼ mN � mS� b
IS
N

� kSþ gI ð2:1Þ

and

dI
dt

¼ b
IS
N

þ kS� ðmþ gÞI: ð2:2Þ

We will assume a constant population size so that N = S + I. This
allows one to reduce the system to a single-state variable with
governing equation given as follows:

dI
dt

¼ bI 1� I
N

� �
þ kðN � IÞ � ðmþ gÞI: ð2:3Þ

A standard SIS model has two physically meaningful equili-
bria: the extinct state and, when the disease is self-sustaining
(R0 > 1), the disease endemic state. When a non-zero and positive
κS is included, there will be a steady introduction of disease from
an external source. This means that the disease-free state is never
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Figure 1. Flow chart showing the movement of individuals within an SISκ population.

Table 1. The model as described by possible transitions and their
corresponding average transition rates. Here, N is the average population
size, I is the number of individuals in the infectious compartment, S is the
number of individuals in the susceptible compartment, μ is the birth and
death rate, β is the contact rate within the population, γ is the recovery
rate, and κ is the strength with which the population is coupled to the
external disease reservoir.

description transition rate

healthy birth (S, I )→ (S + 1, I ) μN

natural death (S, I )→ (S− 1, I ) μS

natural death (S, I )→ (S, I− 1) μI

disease transmission

(human-to-human)

(S, I )→ (S− 1, I + 1) bIS
N

disease transmission (reservoir) (S, I )→ (S− 1, I + 1) κS

recovery (S, I )→ (S + 1, I− 1) γI
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stable. As a result, the SISκ system with R0 < 1 has only one
physically meaningful equilibrium point given by

I� ¼
N½b� ðmþ gþ kÞ� þN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½b� ðmþ gþ kÞ�2 þ 4bk

q
2b

, ð2:4Þ

which is also the mean of the stationary probability distribution
associated with the stochastic system.

2.2. SISκ stochastic model
The model assumes that the susceptible population is well mixed
and non-spatially explicit and that disease can be introduced to
the population from an external source/reservoir. We mathemat-
ically model this scenario using a standard SIS model that is
connected to a disease reservoir. Figure 1 shows a diagram repre-
senting the compartments and possible transitions that may
occur within this novel SISκ model. Table 1 provides details
about these transitions and their associated rate constants.

A disease reservoir may be unknown or poorly understood,
as is the case for the Ebola virus disease in Africa [19,20] or the
COVID-19 pandemic. Because of the difficulties associated with
modelling a poorly understood reservoir, we choose to account
for disease introduction from an external source via a generic
infection from the reservoir [11].

In table 1, this generic infection event is labelled ‘disease
transmission (reservoir),’ and its associated rate is κS. The rate
includes κ, which indicates how strongly the population is
coupled with the external disease reservoir, and S, which is the
number of susceptible individuals in the population. This article
will consider the non-endemic case, so that in the absence of
external exposure (κ = 0), the population will be (or will quickly
become) disease free since the disease is not self-sustaining in the
population. Mathematically the deterministic system that is
associated with our disease model has a basic reproduction
number less than one (R0 < 1) as mentioned previously.

An equal birth and death rate constrain the model to a
stationary average population size N. If N is approximated as
a constant, then the system is overdetermined, and the equation
I + S =N is used to reduce the SISκ system to one dimension—
this leaves us only dynamically modelling the change in the
number of infected individuals over time. Disease transfer and
demographic events are assumed to be discrete continuous-
time Markov processes, with no autocorrelation in time. The
population can thus be modelled using the discrete stochastic
master equation given as follows:

dPðX, tÞ
dt

¼
X
r

[WðX� r; rÞP(X� r, t)�WðX; rÞPðX, tÞ], ð2:5Þ

whereW(X; r) is the transition rate from X to X+ r, with r consisting
of positive or negative integer values, and P is the probability func-
tion for the state variableX. In the one-dimensional SISκ system, the
state variable, X, tracks the number of infectious individuals I and is
real valued. Therefore, X = I and P = [P0, P1, P2, P3,…, PN]. From
equation (2.3) one can see that the transition rates for the one-dimen-
sional SISκ system are W(I; + 1) = βI+ κN and W(I;− 1) = βI2/
N + (κ + μ + γ)I. By substituting these and associated transition
rates into equation (2.5), one finds that each equation takes the form

dPI

dt
¼ ½bðI � 1Þ þ kN�PI�1 � bI þ kN þ bI2

N
þ ðkþ mþ gÞI

� �
PI

þ bðI þ 1Þ2
N

þ ðkþ mþ gÞðI þ 1Þ
" #

PIþ1: ð2:6Þ

Note that the probability that the population size is less than zero is
zero (Pk<0 = 0), as is the probability that the population size is greater
than N (Pk>N = 0). Details of the derivation of equation (2.6) can be
found in appendix A.
3. Results and discussion
3.1. Outbreak vulnerability
Outbreak vulnerability refers to a susceptible population’s
vulnerability to the introduction of infectious disease from
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Figure 2. Contour plot showing the proportion of time a population spends
with a disease present, as determined using a stochastic simulation (see appen-
dix B for details of the numerical method) of the SISκ system with transition
rates shown in table 1. Simulations were run out to 2000 days, and obser-
vations were recorded every 2 days. The proportion of time spent ‘disease
present’ is assumed to be the same as the proportion of observations for
which at least one diseased individual was present in the population. The par-
ameters used for these simulations are {μ, γ, β, κ, N} = {5 × 10−5, 1, β, κ,
N}, where the product Nκ is ‘invasion pressure’ (shown on vertical axis) and β is
given on the horizontal axis as ‘contact rate’. The black dashed line is R0 = 1.
The white dashed line is Nκ = 1(infections/day).
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an external source. Although it is difficult to quantify, the
concept is straightforward. Populations that are strongly con-
nected to an external source of disease will be more
vulnerable to outbreak than those with a relatively weak
coupling to the external source. Similarly, populations with
fewer disease-susceptible individuals are relatively less vul-
nerable to disease outbreak. This can be seen in figure 2
which shows the proportion of time a population spends
with a disease present. In figure 2, the horizontal axis is
associated with the within-population contact rate, β, and
the vertical axis is associated with the strength of external
exposure to disease in a disease-naive population, κN, also
called the invasion pressure. The figure shows that for any
particular contact rate, the proportion of time spent with dis-
ease present increases with invasion pressure. Notice that
two dashed lines have been included to help guide the eye.
The black dashed line is R0 = 1, and the white dashed line
is Nκ = 1(infections/day). The region to the right of the
R0 = 1 line contains the parameter sets for which the disease
is self-sustaining and also is the region of non-validity for
our analysis. We assume that the primary cause of infection
is connection to an external disease reservoir and not from
contact-based infections occurring within the population.
The white dashed line gives us a reference when considering
the contour plot. It is clear that for the example population,
one new infection from an external reservoir per day results
in nearly continuous disease presence in the population.
Note that this is dependent on the frequency of observation,
recovery rate and (as can be seen in the figure) contact rate,
among other considerations.

Although it might seem obvious that an increase in the
contact rate or invasion pressure will lead to more disease,
figure 2 provides a classical sensitivity analysis that allows
one to understand the sensitivity of a disease severity
metric, namely, the time spent with disease present, to
changes in model parameters. One can easily determine
what the region of non-validity looks like along with
precisely why it is the region of non-validity. Specifically,
when the contact rate becomes high enough so that R0 > 1,
disease will spread rapidly within the population, and the
disease severity metric is insensitive to changes in invasion
pressure. The figure also shows that the metric is insensitive
to changes in the contact rate when R0 < 1 and allows one to
see how the system reacts to changes in invasion pressure.
3.2. Stationary distribution
Although the master equation shown in equation (2.5) cannot
be solved analytically in most cases, it is possible to find an
analytic solution for one-dimensional, single-step processes
such as the SISκ system shown in equation (2.6) [21]. The
solution is a probability distribution that describes the prob-
able number of infectious individuals in the SISκ population.
This distribution is centred around the stable equilibrium
point shown in equation (2.4) and is given in its general
form as follows:

PðIÞ ¼ p0

YI
n¼1

lðn� 1Þ
dðnÞ , ð3:1Þ

where λ(n) is the rate of increase to the infectious class, δ(n) is
the rate of decrease to the infectious class and π0 is a prefac-
tor. The SISκ rates are provided in table 1. Recalling that in
the constrained one-dimensional system the susceptible
class is represented in terms of the infectious class as S =
N− I, one finds that

lðIÞ ¼ bIðN � IÞ
N

þ kðN � IÞ ð3:2Þ

and

dðnÞ ¼ (mþ g)I: ð3:3Þ
Using Mathematica and equations (3.2)–(3.3), the exact sol-
ution of equation (3.1) for the constrained SISκ system is
determined to be

PðIÞ ¼ p0
GðN þ 1ÞG ðNk=bÞ þ Ið Þ

GðN � I þ 1ÞGðI þ 1ÞG Nk

b

� � b

Nðgþ mÞ
� �I

,

ð3:4Þ
where GðxÞ is the Gamma function.

Nine example distributions are shown in figure 3, each
corresponding to a different parameter set. The parameter
sets were chosen such that in the absence of a connection to
the external disease reservoir, the populations were non-
endemic with respect to the disease, i.e. R0 < 1. Each
subfigure contains a probability distribution as determined
by equation (3.4) and a histogram based on stochastic simu-
lation. In each case, we can see that the distribution and
simulation match well, which offers confidence in the analyti-
cal result. Each subfigure corresponds to different invasion
pressures; subfigures closer to the top correspond to larger
κ-values, and subfigures farther to the right have more sus-
ceptible individuals in the disease-naive population as
captured by the parameter N. As N and κ increase, the inva-
sion pressure becomes larger, and the population is more
likely to contain disease. The simulated data presented in
red is associated with high invasion pressure. In those popu-
lations, the disease will be effectively endemic even though it
is not self-propagating within the population.
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3.3. Connectivity of the reservoir
The relationship between disease persistence and population
size has been studied for over 50 years [22]. In ‘Deterministic
and stochastic models for recurrent epidemics’, Bartlett aptly
stated that ‘This notion of a critical size is difficult to discuss
quantitatively·· ·’ (p. 97), before giving what he described as a
crude argument for a threshold [23]. In part, this difficulty is
due to the indefinite nature of random processes. Invasion
and persistence behaviour are closely related, and it is therefore
not entirely surprising that a dependence on population size is
seen in the invasion system given by the master equation
(equation (2.6)). While critical community size has been
shown to relate to birth rate, herewewill show that the outbreak
behaviour is analogously dependent on the strength with
which the system is coupled to a disease’s external reservoir.

In our current study, we have investigated disease persist-
ence in a susceptible population in the presence of an
external disease reservoir. Although classification of different
outbreak behaviours is subjective, we offer an approach to dif-
ferentiating between different kinds of outbreak behaviours.
As shown in figures 3 and 4, different invasion pressure results
in a different shape and position of the probability distribution.
In this section, we will draw connections between population
properties and the qualitatively different outbreak behaviours
shown in figure 4. The population properties are mathemat-
ically represented by the model’s parameters which are
associated with the demographic and infection events.

On the basis of the numerical simulations for the SISκ
system as well as previous work modelling Ebola virus dis-
ease by the authors [11], we have chosen to recognize three
qualitatively different outbreak behaviour types: (i) outbreaks
that are small and have no great impact on the population,
and which can therefore be largely ignored; (ii) outbreaks
that are large, occur frequently and result in a significant
disease presence in the population, and which therefore are
of interest to the affected community as well as to epidemiol-
ogists and policy-makers; and (iii) reservoir-driven large
outbreaks and/or consistent disease. In scenario (iii), the
SISκ model gives uninteresting results since the inexhaustible
external source of disease will consistently maintain a high
level of infection within the population of interest indefi-
nitely. Instead, one should dynamically model the source of
disease for scenario (iii).

Writtenmore succinctly, the three different types of outbreak
behaviours are as follows: (i) rare outbreaks, (ii) sporadic out-
breaks, and (iii) frequent outbreaks. These correspond to
parameter combinations that display weak, intermediate and
strong external force of infection, respectively. This differen-
tiation can be seen in figure 3, which shows nine example
theoretical distributions and the corresponding stochastically
simulated histograms that show the frequency of infectious indi-
viduals, and in figure 4, which shows examples of stochastic
simulations under low, medium and high invasion pressure.
As invasion pressure and population size are increased,
so does the force of infection. As one moves upward and right-
ward in figure 3, the force of infection increases as does the
outbreak frequency.
3.3.1. Calculating the normalization constant for the stationary
distribution

The probability distribution given by equation (3.4) fully
describes the stochastic behaviour of the SISκ system while at
quasi-equilibrium, noting that a true equilibrium cannot be
achieved due to the stochastic nature of the problem. However,
the solution provided is incomplete, as there is no analytic
closed form for the normalization constant π0. Indeed, for
most problems, the normalization constant, or prefactor,
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cannot be found analytically and instead must be calculated
numerically. For our model, we can determine the probability
that an SISκ population contains between Ia and Ib infectious
individuals. This probability is given as follows:

Pab ¼
PIb

Ia P̂ðxÞP1
0 P̂ðxÞ , ð3:5Þ

where P̂ðxÞ ¼ PðxÞ=p0 is the unnormalized distribution. By
definition, the sum of the probability distribution across all
possible system states will equal one so that

Ptot ¼
X1
0

PðxÞ ¼ p0

X1
0

P̂ðxÞ ¼ 1, ð3:6Þ

where P(x) is the normalized probability distribution. Solving
for π0 gives

p0 ¼
X1
0

P̂ðxÞ
" #�1

: ð3:7Þ

Although a closed-form solution of π0 is difficult to obtain,
equation (3.7) provides a way to numerically determine the
normalization constant. Additional details on the derivation
of π0 for the SISκ system are provided in appendix C.

The probability, ℙab given by equation (3.5) can be used to
develop intuition about a population’s expected outbreak be-
haviour. Consider the infectious class distribution around the
point I = 0. The greater the value at I = 0, the more probable it
is to find the population disease free at any given time. In
addition, the more the distribution is dispersed away from
I = 0, the more disease cases will occur on average. This
means that a narrow distribution encompassing I = 0 corre-
sponds to a high probability of there being zero infectious
individuals in the population. As the centre of the distri-
bution moves rightward, or as the distribution becomes
more spread out, the probability of having more than
zero infectious individuals increases. This can be seen in
figure 3. The three green distributions in the lower left
have narrow distributions around I = 0. The three yellow
distributions are dispersed slightly rightward, and the red
distributions have a significantly increased spread and
central tendency.

The red distributions are peaked away from I = 0 because
of high invasion pressure from the reservoir. The parameters
used for those simulations correspond to frequent outbreaks.
Such parameters comprise the region (in parameter space) of
non-validity for this modelling approach. A key assumption
of the SISκ model is that the disease is randomly but consist-
ently being introduced into the system from an inexhaustible
external source. If the connection to that source is also very
strong, then the population becomes indistinguishable from
the disease reservoir. Any disease dynamics unique to the
system are drowned out by the flood of infections coming
from the external source.

Figure 5 shows the value of the normalization constant for
4800 different parameter sets. In each case, the value of π0 was
found numerically using the sum in equation (3.7). The value
of the normalization constant decreases asNκ increases in size.

Note that moving up and to the right on the figure
(corresponding to an increase in population size and con-
nectivity) means that one is moving closer to an externally
forced endemic state. Near this endemic state, contact with
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the external reservoir would cause enough disease cases so
that there are always infectious individuals in the population.
This endemic state is not well defined for the stochastic
system presented here, and the boundary between ‘out-
break-extinction cycles’ and ‘endemic’ is fuzzy. In the
following section, we discuss one approach to quantifying
the boundary, the results of which can be seen as dashed
lines on figures 5 and 6.

Figure 6 shows the proportion of time spent with the dis-
ease for the same 4800 parameter sets used in figure 5. For
each parameter set, a stochastic Monte Carlo simulation
was run for 2000 simulation-days with the system state
recorded every 2 days. The time periods during which the
population had a non-zero number of infectious individuals
was identified and summed. This value was scaled by the
total time. In the upper right of figure 6, where Nκ is largest,
the population spends approximately all of its time with the
disease; for these parameter combinations, the population is
perpetually endemic with the disease, so that the region
of parameter space will be referred to as the perpetually
endemic region.
3.3.2. Quantifying the boundary
As previously touched upon, the barrier that defines the
perpetually endemic region is not a simple threshold.
Although there is the extreme case when a population is
clearly disease endemic, there is also a fuzzy or ambiguous
region in parameter space where the disease may become
endemic or may be non-endemic with frequent outbreaks.
The boundary is observed to be approximately coincident
to where the shape of the probability distribution at I = 0 tran-
sitions away from a decaying form. We use the derivative of
the distribution at I = 0 as a basic indicator of that shape.

The first derivative of the distribution is given by

dP
dI

¼ PðIÞ
�
ln

b

ðgþ mÞN
� �

þ c
IbþNk

b

� �

þ c(N � I þ 1)� c(I þ 1)
�
, ð3:8Þ

where cðxÞ ¼ G0ðxÞ=GðxÞ is the Digamma function. When I = 0,
equation (3.8) simplifies to

dP
dI

����
I¼0

¼ p0 ln
b

ðgþ mÞN
� �

þ c
Nk

b

� �
þ c(N þ 1)� c(1)

� �
:

ð3:9Þ

In equation (3.9), note that cð1Þ ¼ �ĝ, where ĝ � 0:5772 is
the Euler–Mascheroni constant and the hat is used to differ-
entiate the Euler–Mascheroni constant from the disease
recovery rate γ.

The asymptotic expansion of the Digamma function [24]
is given as follows:

cðxÞ ¼ lnðxÞ � 1
2x

� 1
12x2

þ 1
120x4

þ . . . : ð3:10Þ

In the case of sufficiently large N and Nκ, if this expan-
sion is used in equation (3.9), then the terms ψ(Nκ/β) and
ψ(N + 1) can be simplified to ln(Nκ/β) and ln(N + 1), respect-
ively. This simplification reveals the following closed-form
approximation for the first derivative of the distribution:

dP
dI

jI¼0 ¼ p0ðln Nk

mþ g

� �
� ĝÞ: ð3:11Þ

Note that the leading order approximation contains the
factors which contribute most strongly to the shape of the dis-
tribution at I = 0. Notably, the contact rate, β, does not appear
at leading order. Rather, we see that the invasion pressure,
κN, primarily governs the shape of the distribution at I = 0.
This result is consistent with the results of the sensitivity
analysis shown in figure 2. Specifically, in equation (3.11),
we see that a change in the contact rate is not expected to
significantly affect the shape of the stationary distribution
at I = 0, and in fact, the sensitivity analysis (figure 2) shows
that the disease severity metric is insensitive to changes in
the contact rate. For small invasion pressure, the slope of
the probability distribution will be negative; for intermediate
invasion pressure, the slope will be zero, which corresponds
to a distribution peaked about I = 0; and for larger invasion
pressure, the distribution becomes peaked away from I = 0
and the slope becomes positive again. This leading order
approximation agrees with our observations, but loses impor-
tant information. Although equation (3.11) is useful for
building intuition, it is most useful to use numerical methods
to analyse equation (3.9).
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We would like to understand how changes in the popu-
lation structure contribute to a transition from very few or
zero cases to a disease endemic state. This can be accom-
plished by considering how the shape of the distribution
reacts to changes in the parameter values. Particularly,
we will consider the transition from a sharply peaked
distribution at I = 0 to a flat distribution at I = 0. This is accom-
plished by numerically finding where equation (3.9) has a
slope consistent with exponential decay, and where it has a
slope of zero. In figures 5 and 6, these slopes are labelled as
‘decay’ and ‘flat’, respectively. In practice, this is equivalent
to solving dP/dI|I=0 =−π0 (since if P(x) = π0exp (−x), then
dP/dx =−π0exp (−x), and thus dP/dx|x=0 =−π0) and dP/
dI|I=0 = 0 (since if P(x) = C, then dP/dx = 0, and thus dP/
dx|x=0 = 0), respectively.

These two equations can be arranged to implicitly
define Nκ. We then use the Broyden–Fletcher–Goldfarb–
Shanno algorithm [25] to numerically solve the equations.
The relationship between N and κ is shown in figures 5
and 6 as the dashed downward sloping lines. The coinci-
dence between the shape of the distribution and consistent
disease presence is shown in figure 6. Note that as the distri-
bution becomes ‘flat’ at I = 0, we see that the population is
expected to have diseased individuals for greater than half
of the time.
3.4. Applicability to more complex disease systems
The results of this work are predicated on a simplification of a
two-dimensional SIS system with external disease exposure.
Results from previous work [11] has shown that similar sim-
plifications can be used to give insight into the fundamental
behaviour of more complex models and into real-world dis-
ease dynamics. Since analogous analytical results are
intractable for more complex models, we have used numeri-
cal simulation to compare our results with these more
complex models.

To determine how well the analytical distribution given
by equation (3.4) can explain the outbreak behaviour of the
more complex models, we use the Kullback–Leibler (KL)
divergence [26] to compare simulated results from four
models (one- and two-dimensional SISκ, SIRκ and SEIRκ)
with the analytical results. The KL divergence is a distance
measure between two probability distributions; small KL
divergence values indicate good agreement between the
two distributions, and large KL divergence values indicate
poor agreement. For each model, we used simulated
frequency of infectious individuals to approximate a prob-
ability distribution. Parameters were chosen to be constant
across the four models, as much as possible.

Good agreement can be seen in figure 7 between
our analytical results and the SISκ simulated results in both
one and two dimensions. For the other two models investi-
gated, SIRκ and SEIRκ, good agreement is seen when the
overall invasion pressure is weak. Once either κ or N is
increased so that disease introductions are occurring more
than an average of once per day, the one-dimensional analytic
SISκ results make a poor proxy for the more complex models.
The precise point of disagreement will depend on many
factors, including the disease properties (a 2 day cold versus a
10 day flu, for instance) and demographic factors.
4. Conclusion
In this article, we have presented a novel disease invasion
model termed the SISκ model which assumes the presence of
an inexhaustible disease source which is external to the popu-
lation of interest. Disease exposure from the external source is
proportional to the size of the susceptible class. In this work,
the population size is assumed to be constant during the
period of investigation, which allows us to find a closed-form
equation, up to a normalization constant, for the stationary dis-
tribution that describes the state of the infected class. This
stationary distribution was used, along with stochastic simu-
lation, to investigate the transition from a practically disease-
free state to a disease endemic state. It is important to note
that the primary driver of disease is external exposure to the
reservoir; community disease spread between population
members is possible, but is not common enough to sustain
the disease within the population. The SISκ model is a simpli-
fication of a previously investigated SEIR-based Ebola virus
disease model [11] whose results were computational only
due to the complicated nature of the model. The analytical
results presented here give insight into stochastic disease inva-
sion for the simplified model as well as to those previous
results pertaining to stochastic Ebola virus disease invasion
and outbreak vulnerability. More generally, the SISκ analytical
results explain stochastic disease invasion for a wide variety
of SIS-type, SIR-type and SEIR-type epidemic models that
contain a connection to a reservoir.

Here, we have presented a stochastic view of disease
invasion and outbreak. Although these phenomena are funda-
mentally random processes, much of the mathematical
research on the topics has been done from a deterministic
perspective. In these studies, there is a tendency to make
generalizations for a particular collection of sub-populations.
Depending on the nature of the scientific inquiry, this approach
can be useful, but it commonly overlooks the issue of practical
population segmentation that is necessary for the application
of a theoretical framework needed to understand disease
spread. In this article, we have investigated how a disease can
be expected to behave in a non-endemic population over a
rangeofpopulation sizes and invasionpressures.When invasion
pressure is low, the non-endemic population is distinct from the
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external source of disease. As invasion pressure is increased, the
population stops being non-endemic with the disease. In ana-
logy, the external reservoir is not trickling disease into the
population of interest, but has turned on a ‘fire-hose’ of disease.
If the connection between the external reservoir and the popu-
lation of interest is so strong, then a fundamental assumption
has been violated; the external reservoir is no longer distinct
from the population of interest. When the external reservoir
and thepopulation of interest cannot be consideredproperly dis-
tinct from one another, then the disease should be modelled
dynamically throughout, and it is an indication that you may
have segmented your population incorrectly.

If properly segmented, then external disease sources may
not need to be considered explicitly. This means that, rather
than dynamically modelling the world’s population, a generic
invasion term can offer sufficient insight intomore local disease
dynamics. Given the relatively local way that disease preven-
tion and eradication strategies are devised and implemented,
this could lead to better informed policy-makers and higher
quality information being used for decision-making. The
approach presented here only assumes that there will be a dis-
ease reservoir external to the system of interest and that there is
some rate of introduction from that external source. This is a
more practical level of investigation for informing policy, as
compared with the holistic approach (i.e. trying to understand
the intricacies of the entire population network, which may be
composed of multiple cities, states or countries).

In this article, we have investigated the behaviour
and sensitivity of our population system under different popu-
lation sizes and coupling strengths, but we have not addressed
how a coupling strength should be independently determined.
This is an open question, and we view it as an interesting topic
for future work. Intuitively one would assume that the geo-
graphic distance between two populations is likely to be
important; the closer two populations are to one another, the
easier it is to intermingle. There are a myriad of other potential
factors, including possible government restrictions to travel,
customs and culture of a population, and other factors that
can affect the physical contact between the populations. Quan-
tifying coupling strength is an interesting and complex topic.
To address such a difficult question, we expect that mathemat-
icalmodelling techniqueswill bemost effective in coordination
with data-driven studies. Moreover, such a data-driven scienti-
fic approach would enable a model validation study with
global sensitivity and uncertainty analysis [27,28] to compare
with the theoretical results presented in this article.
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Appendix A. Derivation of equation (2.6)
The two-dimensional mean-field SISκ model is provided in
the main text (equations (2.1)–(2.2)) as follows:

dS
dt

¼ mN � mS� b
IS
N

� kSþ gI

and

dI
dt

¼ b
IS
N

þ kS� ðmþ gÞI:

Assuming a constant population size so that N = S + I, one
can reduce the two-dimensional system to a one-dimensional
governing equation provided in the main text (equation (2.3))
as follows:

dI
dt

¼ bI 1� I
N

� �
þ kðN � IÞ � ðmþ gÞI:

This one-dimensional equation can be rewritten as follows:

dI
dt

¼ ðbI þ kNÞ � bI2

N
þ ðkþ mþ gÞI

� �
, ðA 1Þ

¼ lðIÞ � dðIÞ, ðA 2Þ
where λ(I) and δ(I) terms are the growth and decay
terms, respectively. For a one-step process with growth
rate equal to λ(I) and decay rate equal to δ(I), then the
transition rates for the one-dimensional SISκ system are
as follows:

WðI; þ1Þ ¼ lðIÞ, WðI; �1Þ ¼ dðIÞ
and WðI � 1; þ1Þ ¼ lðI � 1Þ, WðI þ 1, �1Þ ¼ dðI þ 1Þ:

)

ðA 3Þ

By substituting these transition rates into the master equation
provided in the main text (equation (2.5)) as follows:

dPðX, tÞ
dt

¼
X
r

[WðX� r; rÞP(X� r, t)�WðX; rÞPðX, tÞ],

one finds that

dPðIÞ
dt

¼ lðI � 1ÞPðI � 1Þ � lðIÞPðIÞ þ dðI þ 1ÞPðI þ 1Þ � dðIÞPðI

¼ ðbðI � 1Þ þ kNÞPðI � 1Þ � ðbI þ kNÞPðIÞ ðA 4Þ

þ bðI þ 1Þ2
N

þ ðkþ mþ gÞðI þ 1Þ
 !

PðI þ 1Þ

� bI2

N
þ ðkþ mþ gÞI

� �
PðIÞ, ðA 5Þ

which can be rearranged into the master equation for the one-
dimensional system provided in the main text (equation 2.6)
as follows

dPI

dt
¼ ½bðI � 1Þ þ kN�PI�1 � bI þ kN þ bI2

N
þ ðkþ mþ gÞI

� �
PI

þ bðI þ 1Þ2
N

þ ðkþ mþ gÞðI þ 1Þ
" #

PIþ1: ðA 6Þ
Appendix B. Numerical simulations
Stochastic realizations, representing possible disease trajec-
tories, of the SISκ model were produced using a type of

https://github.com/GNieddu/SIS_externalRes
https://github.com/GNieddu/SIS_externalRes
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Monte Carlo method. The method was originally proposed
by Kendall [29] for simulating birth-death processes and
was popularized by Gillespie [30] as a useful method for
simulating chemical reactions based on molecular collisions.
The results of a Gillespie simulation are a stochastic trajectory
that represents an exact sample from the probability function
that solves the master equation. Therefore, the method can be
used to simulate population dynamics where molecular col-
lisions are replaced by individual events and interactions
including birth, death and infection [31].

Let x = (x1,…, xn)
T denote the state variables of a system,

where xj provides the number of individuals in state xj at
time t. The first step of the algorithm is to initialize the
number of individuals in the population compartments x0.
For a given state x of the system, one calculates the transition
rates denoted as ai(x) for i = 1… l, where l is the number of
transitions. Thus, the sum of all transition rates is given by
a0 ¼

Pl
i¼1 aiðxÞ.

Random numbers are generated to determine both the next
event to occur as well as the time at which the next event will
occur. One simulates time τ until the next transition by draw-
ing from an exponential distribution with mean 1/a0. This is
equivalent to drawing a random number r1 uniformly on (0,
1) and computing τ = (1/a0) ln (1/r1). During each random
time step, exactly one event occurs. The probability of any par-
ticular event taking place is equal to its own transition rate
divided by the sum of all transition rates ai(x)/a0. A second
random number r2 is drawn uniformly on (0, 1), and it is
used to determine the transition event that occurs. If 0 < r2 <
a1(x)/a0, then the first transition occurs; if a1(x)/a0 < r2 <
(a1(x) + a2(x))/a0, then the second transition occurs, and so on.

Finally, both the time step and the number of individuals
in each compartment are updated, and the process is iterated
until the disease goes extinct or until the simulation time has
been exceeded [31].
Appendix C. Derivation of π0 for the SISκ model
Using the online tool made by Wolfram Alpha LLC, a closed-
form solution to equation (3.1) can be found. By entering

Prod½ðbeta�ðn�1Þ�ð1� ðn�1Þ=NÞ
þ kappa�ðN� nþ 1ÞÞ=ððmuþ gammaÞ�nÞ, ½n, 1, x��

as input at https://www.wolframalpha.com, one finds that

PðxÞ ¼ p0
�Nð ÞðxÞ �b=Nðgþ mÞð Þx Nk=bð ÞðxÞ

x!
, (C 1Þ
where π0 is a normalization constant, x is the state variable
representing the number of infectious individuals, (·)(x) is
the rising factorial and (·)x is the usual exponentiation nota-
tion. With (·)(x) the falling factorial, equation (C1) can be
simplified using (−N )(x) = (N )(x)/(−1)x so that

PðxÞ ¼ p0
Nð ÞðxÞ b=Nðgþ mÞð Þx Nk=bð ÞðxÞ

x!

¼ p0
N! b=Nðgþ mÞð Þx Nk=bð ÞðxÞ

ðN � xÞ! x! :

Although we are primarily considering x as a discrete
variable that takes on whole-number values, this equation
can be simplified into ‘gamma’ notation by using the
approximation Gðnþ 1Þ ¼ n! so that

PðxÞ ¼ p0
GðN þ 1ÞGððNk=bÞ þ xÞ

GðN � xþ 1ÞGðxþ 1ÞGðNk=bÞ
b

Nðgþ mÞ
� �x

:

Alternatively, by recognizing the binomial coefficient, the
expression can be written as a modified binomial distribution

PðxÞ ¼ p0
N
x

� �
b

Nðgþ mÞ
� �x

1� b

Nðgþ mÞ
� �N�x

1� b

Nðgþ mÞ
� �x�N Nk

b

� �ðxÞ
:

By substituting R0 ¼ b
gþm, one obtains

PðxÞ ¼ p0
N
x

� �
R0

N

� �x

1� R0

N

� �N�x

1� R0

N

� �x�N Nk

b

� �ðxÞ

¼ p0 B
x; N, R0

N

� �
1� R0

N

� �x�N Nk

b

� �ðxÞ
,

where B(·) is the binomial distribution. Summing both sides
gives

1 ¼ p0

X1
�1

B
x; N, R0

N

� �
1� R0

N

� �x�N Nk

b

� �ðxÞ
,

which allows one to find the normalization constant as follows:

p�1
0 ¼ 1� R0

N

� �x�N Nk

b

� �ðxÞ* +
,

where the mean is taken with respect to the binomial
distribution, B(x; N, R0/N ).
References
1. Wolfe ND, Dunavan CP, Diamond J. 2007
Origins of major human infectious diseases.
Nature 447, 279–283. (doi:10.1038/
nature05775)

2. Bertuzzo E, Finger F, Mari L, Gatto M, Rinaldo A.
2016 On the probability of extinction of the Haiti
cholera epidemic. Stoch. Environ. Res. Risk Assess.
30, 2043–2055. (doi:10.1007/s00477-014-0906-3)

3. Turner WC et al. 2016 Lethal exposure: an
integrated approach to pathogen transmission via
environmental reservoirs. Sci. Rep. 6, 1–13. (doi:10.
1038/s41598-016-0001-8)

4. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ.
2002 West Nile virus. Lancet Infect. Dis. 2, 519–529.
(doi:10.1016/S1473-3099(02)00368-7)

5. Shi Z, Hu Z. 2008 A review of studies on animal
reservoirs of the SARS coronavirus. Virus Res. 133,
74–87. (doi:10.1016/j.virusres.2007.03.012)

6. Leroy EM et al. 2005 Fruit bats as reservoirs of Ebola virus.
Nature 438, 575–576. (doi:10.1038/438575a)
7. Lam TT-Y et al. 2020 Identifying SARS-CoV-2-
related coronaviruses in Malayan pangolins.
Nature 583, 282–285. (doi:10.1038/s41586-020-
2169-0)

8. Anderson RM, May RM, Anderson B. 1992 Infectious
diseases of humans: dynamics and control, vol. 28.
Kettering, UK: Oxford University Press.

9. Bailey NT. 1975 The mathematical theory of
infectious diseases and its applications, 2nd edn.
High Wycombe, UK: Charles Griffin & Company Ltd.

https://www.wolframalpha.com
https://www.wolframalpha.com
http://dx.doi.org/10.1038/nature05775
http://dx.doi.org/10.1038/nature05775
https://doi.org/10.1007/s00477-014-0906-3
http://dx.doi.org/10.1038/s41598-016-0001-8
http://dx.doi.org/10.1038/s41598-016-0001-8
http://dx.doi.org/10.1016/S1473-3099(02)00368-7
http://dx.doi.org/10.1016/j.virusres.2007.03.012
http://dx.doi.org/10.1038/438575a
http://dx.doi.org/10.1038/s41586-020-2169-0
http://dx.doi.org/10.1038/s41586-020-2169-0


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220253

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 J

ul
y 

20
22

 

10. Bartlett MS. 1978 An introduction to stochastic
processes: with special reference to methods and
applications. New York, NY: CUP Archive.

11. Nieddu GT, Billings L, Kaufman JH, Forgoston E,
Bianco S. 2017 Extinction pathways and
outbreak vulnerability in a stochastic Ebola model.
J. R. Soc. Interface 14, 20160847. (doi:10.1098/rsif.
2016.0847)

12. Malthus TR. 1888 An essay on the principle of
population. London, UK: Reeves & Turner.

13. May RM. 2001 Stability and complexity in model
ecosystems, vol. 6. Princeton, NJ: Princeton
University Press.

14. Verhulst P-F. 1838 Notice sur la loi que la
population suit dans son accroissement.
Correspondance Mathématique et Physique Publiée
par A. Quetelet 10, 113–121.

15. Burton J, Billings L, Cummings DA, Schwartz IB.
2012 Disease persistence in epidemiological models:
the interplay between vaccination and migration.
Math. Biosci. 239, 91–96. (doi:10.1016/j.mbs.2012.
05.003)

16. Arino J. 2006 Disease spread in metapopulations.
Nonlinear Dyn. Evol. Equ. 48, 1–13.

17. Khasin M, Meerson B, Khain E, Sander LM. 2012
Minimizing the population extinction risk by
migration. Phys. Rev. Lett. 109, 138104. (doi:10.
1103/PhysRevLett.109.138104)

18. Rohani P, Earn DJ, Grenfell BT. 1999 Opposite
patterns of synchrony in sympatric disease
metapopulations. Science 286, 968–971. (doi:10.
1126/science.286.5441.968)

19. Leirs H, Mills JN, Krebs JW, Childs JE, Akaibe D, Woollen
N, Ludwig G, Peters CJ, Ksiazek TG. 1999 Search for the
Ebola virus reservoir in Kikwit, Democratic Republic of
the Congo: reflections on a vertebrate collection.
J. Infect. Dis. 179(Supplement_1), S155–S163. (doi:10.
1086/514299)

20. Pourrut X et al. 2005 The natural history of Ebola
virus in Africa. Microbes Infect. 7, 1005–1014.
(doi:10.1016/j.micinf.2005.04.006)

21. Gardiner C. 2009 Stochastic methods, vol. 4. Berlin,
Germany: Springer Berlin.

22. Bartlett M. 1960 The critical community size for
measles in the United States. J. R. Stat. Soc. Ser. A
(General) 123, 37–44. (doi:10.2307/2343186)

23. Bartlett M. 1956 Deterministic and stochastic
models for recurrent epidemics. In Proc. of the 3rd
Berkeley Symp. on Mathematical Statistics and
Probability, vol. 4, p. 109.

24. Abramowitz M, Stegun IA. 1967 Handbook of
mathematical functions: with formulas, graphs, and
mathematical tables. Cambridge, UK: Cambridge
University Press.

25. Fletcher R. 2013 Practical methods of optimization.
Chichester, UK: John Wiley & Sons.

26. Kullback S, Leibler RA. 1951 On information and
sufficiency. Ann. Math. Stat. 22, 79–86. (doi:10.
1214/aoms/1177729694)

27. Pianosi F, Beven K, Freer J, Hall JW, Rougier J,
Stephenson DB, Wagener T. 2016 Sensitivity analysis
of environmental models: a systematic review with
practical workflow. Environ. Model. Softw. 79,
214–232. (doi:10.1016/j.envsoft.2016.02.008)

28. Servadio JL, Convertino M. 2018 Optimal
information networks: application for data-driven
integrated health in populations. Sci. Adv. 4,
e1701088. (doi:10.1126/sciadv.1701088)

29. Kendall DG. 1950 An artificial realization of a simple
‘birth-and-death’ process. J. R. Stat. Soc. Ser. B
(Methodological) 12, 116–119.

30. Gillespie DT. 1977 Exact stochastic simulation of
coupled chemical reactions. J. Phys. Chem. 81,
2340–2361. (doi:10.1021/j100540a008)

31. Forgoston E, Moore RO. 2018 A primer on noise-
induced transitions in applied dynamical systems.
SIAM Rev. 60, 969–1009. (doi:10.1137/
17M1142028)

http://dx.doi.org/10.1098/rsif.2016.0847
http://dx.doi.org/10.1098/rsif.2016.0847
http://dx.doi.org/10.1016/j.mbs.2012.05.003
http://dx.doi.org/10.1016/j.mbs.2012.05.003
http://dx.doi.org/10.1103/PhysRevLett.109.138104
http://dx.doi.org/10.1103/PhysRevLett.109.138104
http://dx.doi.org/10.1126/science.286.5441.968
http://dx.doi.org/10.1126/science.286.5441.968
http://dx.doi.org/10.1086/514299
http://dx.doi.org/10.1086/514299
http://dx.doi.org/10.1016/j.micinf.2005.04.006
http://dx.doi.org/10.2307/2343186
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1016/j.envsoft.2016.02.008
http://dx.doi.org/10.1126/sciadv.1701088
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1137/17M1142028
http://dx.doi.org/10.1137/17M1142028

	Characterizing outbreak vulnerability in a stochastic SIS model with an external disease reservoir
	Introduction
	Methods
	SISκ deterministic model
	SISκ stochastic model

	Results and discussion
	Outbreak vulnerability
	Stationary distribution
	Connectivity of the reservoir
	Calculating the normalization constant for the stationary distribution
	Quantifying the boundary

	Applicability to more complex disease systems

	Conclusion
	Ethics
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Disclaimer
	Appendix A. Derivation of equation (2.6)
	Appendix B. Numerical simulations
	Appendix C. Derivation of π0 for the SISκ model
	References


