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Coherent Pattern Prediction in Swarms
of Delay-Coupled Agents

Luis Mier-y-Teran-Romero, Eric Forgoston, and Ira B. Schwartz

Abstract—We consider a general swarm model of self-propelling
agents interacting through a pairwise potential in the presence of
noise and communication time delay. Previous work has shown
that a communication time delay in the swarm induces a pattern
bifurcation that depends on the size of the coupling amplitude.
We extend these results by completely unfolding the bifurcation
structure of the mean field approximation. Our analysis reveals a
direct correspondence between the different dynamical behaviors
found in different regions of the coupling-time delay plane with
the different classes of simulated coherent swarm patterns. We
derive the spatiotemporal scales of the swarm structures, as well as
demonstrate how the complicated interplay of coupling strength,
time delay, noise intensity, and choice of initial conditions can affect
the swarm. In particular, our studies show that for sufficiently
large values of the coupling strength and/or the time delay, there
is a noise intensity threshold that forces a transition of the swarm
from a misaligned state into an aligned state. We show that this
alignment transition exhibits hysteresis when the noise intensity is
taken to be time dependent.

Index Terms—Autonomous agents, bifurcation, delay systems,
nonlinear dynamical systems, pattern formation.

I. INTRODUCTION

THE rich dynamic behavior of interacting multiagent, or
particle, systems has been the focus of numerous re-

cent studies. These multiparticle systems are capable of self-
organization, as shown by the various coherent conformations
with complex structure that they generate, even when the inter-
actions are short range and in the absence of a leader agent. The
study of these “swarming” or “herding” systems has had many
interesting biological applications which have resulted in a bet-
ter understanding of the spatiotemporal patterns formed by bac-
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terial colonies, fish, birds, locusts, ants, pedestrians, etc. [1]–[7].
The mathematical study of these swarming systems is also help-
ful in the understanding of oscillator synchronization, as in the
neural phenomenon of central pattern generators [8]. The re-
sults of these studies have impacted and have been successfully
applied in the design of systems of autonomous, intercommu-
nicating robotic systems [9]–[12], as well as mobile sensor net-
works [13].

It is possible to design swarming models for robotic motion
planning, consensus and cooperative control, and spatiotem-
poral formation. Pairwise potentials for individual agents can
be straightforwardly ported onto autonomous vehicles. Further-
more, these pairwise interactions can be used in conjunction
with simple scalable algorithms to achieve multivehicle co-
operative motion [14]. Specific goals include: obstacle avoid-
ance [11], boundary tracking [15], environmental sensing [13],
[16] and decentralized target tracking [17].

An important problem is that of environmental consensus es-
timation. Here, the individuals of the swarm communicate with
each other through a network to achieve asymptotically syn-
chronous information about their environment [13]. Recently,
consensus was extended to include time-delayed communica-
tion among agents [18].

Task allocation is another problem of interest that involves
robotic swarms. The objective is to reallocate swarm robots to
perform a set of tasks in parallel and independent of one another
in an optimal way. In order to make task reallocation more
realistic, it is possible to consider a time delay that arises from
the amount of time required to switch between tasks [19].

Regardless of the design objective of a robotic swarm sys-
tem, a comprehensive theoretical analysis of the model must be
performed in order to achieve successful algorithm design.

Many different mathematical approaches have been utilized
to study aggregating agent systems. Some of these studies have
treated the problem at a single-individual level, using ordinary
differential equations (ODEs) or delay differential equations to
describe their trajectories [10], [20]–[22]. An alternative method
has been proposed by other researchers and consists of using
continuum models that consider averaged velocity and agent
density fields that satisfy partial differential equations [2], [3],
[5], [6]. In addition, authors also have studied the effects of
noise on the swarm’s behavior and have shown the existence of
noise-induced transitions [23], [25]. The study of these systems
has been enriched by tools from statistical physics since both
first- and second-order phase transitions have been found in the
formation of coherent states [28].

An additional effect that has recently been considered is
that of communication time delays between robots. Time delay
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models are common in many areas of mathematical biology in-
cluding population dynamics, neural networks, blood cell mat-
uration, virus dynamics, and genetic networks [29]–[37]. In the
context of swarming agents, it has been shown that the intro-
duction of a communication time delay may induce transitions
between different coherent states in a manner which depends
on the coupling strength between agents and the noise inten-
sity [25]. Thus far, most of the work has concentrated on the
case of uniform time delays among agents [26]. However, the
practical engineering of multiagent systems requires researchers
to consider the case in which time delays may vary due to data
processing times, problems in interagent communication, etc.
The case of differing (and even time varying) time delays be-
tween agents may be treated similarly to the case of a single
delay by using a data buffer [27].

In this paper, we carry out a detailed study of the bifurcation
structure of the mean field approximation used in [25] and in-
vestigate how the bifurcations in the system are modified in the
presence of noise. Section II contains the swarm model, while
Section III contains the derivation of the mean field approxima-
tion. The bifurcation analysis of the mean field equation can be
found in Section IV, and Section V provides a comparison of
the mean field analysis with the nonlinear governing equations.
In Section VI, we describe the effects of noise on the swarm,
and our conclusions are contained in Section VII.

II. SWARM MODEL

We consider a 2-D swarm that consists of N identical self-
propelling individuals of unit mass that are mutually attracted to
one another in a symmetric fashion. Hence, the coupling of the
agents occurs via a fully connected graph. In addition, we con-
sider the case in which the individuals that comprise the swarm
are communicating with each other in a stochastic environment.
Because of the finite communication times between individu-
als, there is a time delay between interactions. Assuming that
the communication time between agents is constant and equal
to τ > 0, the swarm dynamics is described by the following
governing equations:

ṙi =vi (1a)

v̇i =
(
1 − |vi |2

)
vi −

a

N

N∑

j=1
i �=j

(ri(t) − rj (t − τ)) + ηi(t) (1b)

for i = 1, 2, . . . , N . The terms ri and vi , respectively, represent
the 2-D position and velocity of the ith agent at time t. The
strength of the attraction is measured by the coupling constant
a > 0. The self-propulsion and frictional drag forces on each
agent is given by the term

(
1 − |vi |2

)
vi . Therefore, in the ab-

sence of coupling, agents tend to move on a straight line with
unit speed |vi | = 1 as time goes to infinity. The term ηi(t) =
(η(1)

i , η
(2)
i ) is a 2-D vector of stochastic white noise with inten-

sity equal to D such that 〈η(�)
i (t)〉 = 0 and 〈η(�)

i (t)η(k)
j (t′)〉 =

2Dδ(t − t′)δij δ�k for i, j = 1, 2, . . . , N and �, k = 1, 2. It is
the main objective of this study to identify the possible swarm
behaviors for different values of a and τ .

The coupling between individuals arises from a time delayed,
spring-like potential. Hence, our equations of motion may be
considered to be the first term in a Taylor expansion of other
more general time-delayed potential functions about an equilib-
rium point.

III. MEAN FIELD APPROXIMATION

We can investigate the stability of the swarm system by de-
riving a mean field approximation of the system. The derivation
involves the consideration of agent coordinates relative to the
center of mass and the elimination of the noise terms. The center
of mass of the swarming system is given by

R(t) =
1
N

N∑

i=1

ri(t). (2)

The position of each individual can be decomposed into

ri = R + δri , i = 1, 2, . . . , N (3)

where δri , is the vector from the center of mass to particle i,
and

N∑

i=1

δri(t) = 0. (4)

We substitute the ansatz given by (3) into the second-order
system that is equivalent to (1a)–(1b) with D = 0. After simpli-
fication, one obtains

R̈ + δr̈i =(1 − |Ṙ|2 − 2Ṙ · δṙi − |δṙi |2)(Ṙ + δṙi)

− a(N − 1)
N

(R(t) − R(t − τ) + δri(t))

− a

N
δri(t − τ) (5)

where we used the fact that (4) can be written as

δri(t − τ) = −
N∑

j=1
i �=j

δrj (t − τ). (6)

Summing (5) over i and using (4), we find

R̈ =

(

1 − |Ṙ|2 − 1
N

N∑

i=1

|δṙi |2
)

Ṙ

− 1
N

N∑

i=1

(2Ṙ · δṙi + |δṙi |2)δṙi

− a
N − 1

N
(R(t) − R(t − τ)) . (7)

By inserting (7) into (5), it is possible to find the following
equation for δr̈i :

δr̈i =

⎛

⎝ 1
N

N∑

j=1

|δṙj |2 − 2Ṙ · δṙi − |δṙi |2
⎞

⎠ Ṙ

+ (1 − |Ṙ|2 − 2Ṙ · δṙi − |δṙi |2)δṙi
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+
1
N

N∑

j=1

(2Ṙ · δṙj + |δṙj |2) δṙj

− a
N − 1

N
δri −

a

N
δri(t − τ) (8)

for i = 1, 2, . . . , N .
Taken together, (7) and (8) are equivalent to (1a) and (1b)

and they merely involve a reconstruction of the original system
that is written in terms of particle coordinates ri into this new
system that is written in terms of the center of mass R and
coordinates relative to the center of mass δri . One can see
that this mapping has transformed the original 2N differential
equations into 2N + 2 equations. Due to the relation given by
(4), only 2N of the transformed set of equations are independent.
Therefore, there is no inconsistency between the original and
transformed equations.

By neglecting the fluctuation terms δri from (7) and taking
N → ∞, we obtain the following heuristic mean field approxi-
mation for the center of mass:

R̈ = (1 − |Ṙ|2)Ṙ − a(R(t) − R(t − τ)) (9)

where we made the approximation a(N − 1)/N ≈ a since
we are considering the large system size limit N → ∞. We
will address the validity of neglecting the fluctuation terms in
Section V.

IV. BIFURCATIONS IN THE MEAN FIELD EQUATION

Having derived a mean field equation, we continue by ana-
lyzing the bifurcation structure. This bifurcation analysis will
allow us to better understand the behavior of the system in
different regions of parameter space. Letting R = (X,Y ) and
Ṙ = (U, V ), (9) may be written in component form as

Ẋ = U (10a)

U̇ = (1 − U 2 − V 2)U − a(X − X(t − τ)) (10b)

Ẏ = V (10c)

V̇ = (1 − U 2 − V 2)V − a(Y − Y (t − τ)). (10d)

Regardless of the value of a and τ , (10a)–(10d) have transla-
tional invariant stationary solutions given by

X = X0 , U = 0, Y = Y0 , V = 0 (11)

where X0 and Y0 are two free parameters. In addition, (10a)–
(10d) also have a three parameter family of uniformly translating
solutions given by

X = U0t + X0 , U = U0 , Y = V0t + Y0 , V = V0
(12)

which requires

U 2
0 + V 2

0 = 1 − aτ (13)

and is real-valued only when aτ ≤ 1. In the two-parameter space
(a, τ), the hyperbola aτ = 1 is in fact a pitchfork bifurcation
curve on which the uniformly translating states are born from the
stationary state (X0 , 0, Y0 , 0). The pitchfork bifurcation curve
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Fig. 1. (a) Hopf (blue) and pitchfork (red) bifurcation curves in (a, τ ) space.
(b) Zoom-in of Fig. 1(a). Included is the saddle to node transition curve (dashed
black) and a number in each region (with boundaries given by the solid curves)
that indicates the number of eigenvalues with a real part greater than zero.

can be seen in Fig. 1(a). The other branch of the pitchfork
bifurcation is an unphysical solution with negative speed.

Linearizing (10a)–(10d) about the stationary state, we obtain
the characteristic equation

(a(1 − e−λτ ) − λ + λ2)2 = 0. (14)

It is sufficient to study the zeros of the function

D(λ) = a(1 − e−λτ ) − λ + λ2 = 0 (15)

since the eigenvalues [see (14)] of the system given by (10a)–
(10d) are obtained by duplicating those of (15).

We identify the Hopf bifurcations in the two parameter space
(a, τ) by letting the eigenvalue be purely imaginary. Our choice
of λ = iω is substituted into (15), and one obtains

a − ω2 − iω = ae−iωτ . (16)

By taking the modulus of (16), one finds that a at the Hopf point
is given by

a2
H = (aH − ω2)2 + ω2 . (17)

If we consider the case when ω �= 0, then

aH =
1 + ω2

2
. (18)

We substitute (18) into (16) and take the complex conjugate.
This allows us to obtain the following equation for τ at the Hopf
point that does not involve a

1 − ω2

1 + ω2 + i
2ω

1 + ω2 = eiωτ . (19)

We isolate τ by equating the arguments of both sides, being
careful to use the branch of tan θ in (0, π) since the left-hand
side of the aforementioned equation is on the upper complex
plane for ω > 0. We then obtain a family of Hopf bifurcation
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curves parameterized by ω

aH (ω) =
1 + ω2

2
(20a)

τHn
(ω) =

1
ω

(
arctan

(
2ω

1 − ω2

)
+ 2nπ

)
, n = 0, 1, . . . .

(20b)

The first few members of the family of Hopf bifurcation curves
are shown in Fig. 1(a). It is also possible to eliminate the pa-
rameter ω in (20a) and (20b). Doing so, one obtains

τHn
(a) =

1√
2a − 1

(
arctan

(√
2a − 1
1 − a

)
+ 2nπ

)

n = 0, 1 . . . . (21)

In spite of their appearance, the Hopf curves in (20a), (20b),
and (21) are, in fact, continuous at ω = 1 and a = 1, respec-
tively, [with the correct branch of tan θ in (0, π)]. Inspection of
(20a), shows that the Hopf frequency depends only on the value
of a for all members in the family. The frequency equals one
when a = 1, and the frequency tends to infinity as a increases.
Interestingly, only the first Hopf curve is defined at a = 1/2
and has the value τH0 |a=1/2 = 2. The point (a = 1/2, τ = 2)
which lies both on the first Hopf curve and on the pitchfork
curve is a Bogdanov–Takens (BT) point (the eigenvalues are
zero), where ω = 0. None of the other Hopf branches meet the
pitchfork bifurcation curve since τ → ∞ as a → 1/2.

The pitchfork and Hopf bifurcation curves in the (a, τ) pa-
rameter space were computed using a numerical continuation
method [38]. These results (not shown) are in perfect agreement
with our analytical calculations. These numerical continuation
studies also allow for the determination of the number of eigen-
values with real part greater than zero in different regions of the
(a, τ) parameter space. The results are shown in Fig. 1(b). In
addition, our numerical continuation analysis revealed node to
focus transitions of the steady state. These transitions occur at
points where there are two real and equal eigenvalues, i.e., where
D(λ) = 0 and D′(λ) = 0, for real-valued λ. If D′(λ) = 0, then
one can show that e−τ λ = 1 − 2λ/aτ . Insertion of this relation
into D(λ) = 0 leads to

λ2 −
(

1 − 2
τ

)
λ + a − 1

τ
= 0 (22)

which has solutions λ = 1/2
[
1 − 2

τ ± (1 + 4
τ 2 − 4a)1/2

]
. For

the roots to be repeated, we set the discriminant equal to zero and
this gives the following curve where the node-focus transitions
occur

τ =
1

√
a − 1/4

. (23)

Moreover, by inspecting the solutions to (22), one finds that the
repeated eigenvalues have positive real parts if τ > 2 and nega-
tive real parts if τ < 2. In Fig. 1(b), we show the pitchfork and
Hopf bifurcation curves overlaid with the node-focus transition
curve given by (23).

As seen in Fig. 1(b), the pitchfork and first Hopf bifurcation
curves, together with the node-focus transition curve, split the
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Fig. 2. Real and imaginary parts of the dominating eigenvalues as one moves
around the BT (a = 1/2, τ = 2) in (a, τ ) parameter space. The eigenvalues
shown are associated with the locations (a) a = 0.60, τ = 2.0, (b) a = 0.48,
τ = 2.09, (c) a = 0.40, τ = 2.01, (d) a = 0.53, τ = 1.90, and (e) a = 0.55,
τ = 1.91. See Fig. 1(b) to see where each of the (a, τ ) points lies in relation to
the bifurcation curves.

area around the BT point into five different regions. The be-
havior of the dominating eigenvalues (excluding the one at the
origin) in each of these five regions is shown in Fig. 2(a)–(e).
Starting at a point directly to the right of the BT point in (a, τ)
space, there is a pair of eigenvalues with positive real parts
and nonzero imaginary parts [see Fig. 2(a)]. Moving counter-
clockwise, the eigenvalue pair collapse on the positive real axis
upon crossing the upper branch of the node-focus transition
curve [see Fig. 2(b)]. Continuing in the same direction, we ob-
serve two different instances of eigenvalues crossing the origin:
1) First, the smaller of the two purely real and positive eigenval-
ues does so as the upper part of the pitchfork bifurcation curve
is crossed [see Fig. 2(c)], and 2) then, the remaining purely
real and positive eigenvalue crosses the origin as the lower part
of the pitchfork bifurcation curve is crossed [see Fig. 2(d)].
Finally, as the node-focus transition curve is crossed, the two
purely real and negative eigenvalues coincide on the negative
real axis and acquire nonzero imaginary parts [see Fig. 2(e)].
Continuing upward in parameter space, the complex pair of
eigenvalues crosses the imaginary axis as the Hopf bifurcation
curve is crossed, giving birth to a stable limit cycle.

V. COMPARISON OF THE MEAN FIELD ANALYSIS

AND THE FULL SWARM EQUATIONS

Our analysis of the deterministic mean field equations iden-
tified the different dynamical behaviors that the approxima-
tion given by (9) exhibits in different regions of the (a, τ)
plane. However, the analysis provides no information about
how the swarm agents are distributed about the center of
mass. We neglect the stochastic terms in (1a) and (1b) and use
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Fig. 3. Regions in (a, τ ) space with different dynamical behavior.

extensive numerical simulations to identify some of the coherent
structures that the swarm adopts asymptotically in time.

1) A translational state, in which all swarm particles have
identical positions and velocities and move uniformly in a
straight line. The direction of motion depends on the initial
conditions. This behavior is only possible in region A of
Fig. 3. Moreover, the asymptotic convergence to this state
requires that all particles be located in close proximity and
with aligned velocities at the initial time. Hence, the basin
of attraction is extremely small which causes this state to
be very sensitive to perturbations. This is discussed later
in more detail.

2) A ring state, in which the center of mass is stationary. The
swarm agents distribute themselves along the ring with
roughly half of the agents moving clockwise and half of
the agents moving counterclockwise. The final stationary
position of the center of mass and the particular behavior
of each individual in the swarm is dependent on the initial
conditions. This behavior is possible in regions A, B, and
C of Fig. 3.

3) A rotational state, in which all swarm agents collapse to
the center of mass and the latter rotates on a circular orbit.
The direction of rotation depends on the initial conditions.
This behavior is only possible in region C of Fig. 3.

4) A degenerate rotational state, in which all swarm particles
collapse to the center of mass and the latter oscillates back
and forth on a line. This behavior is only possible in region
C of Fig. 3. In addition, it requires that the initial motion
of all swarm particles be constrained to a line and so is
sensitive with respect to perturbations and noise.

The aforementioned list is not extensive and our simulations
have revealed other time-asymptotic patterns. However, all of
these other patterns (and including the translational state and
the degenerate rotational state) require extreme symmetry in the
initial conditions and are very sensitive with respect to pertur-
bations and noise. Our numerical simulations suggest that only
the ring and the rotational state have a significant robustness
with respect to perturbations and noise.

The full system of equations predict a bistable behavior since
the translating and ring states are both possible in regions A
and C (see Fig. 3), depending on the initial conditions. The
linear stability analysis of Section IV shows that the mean field
approximation fails to capture this bistable behavior.

The mean-field bifurcation results obtained here are of prac-
tical value since they provide us with guidelines to select val-
ues for a and τ that will result in a particular coherent pattern

asymptotically in time. In the case of bistability, our numer-
ical simulations strongly suggest that the initial alignment of
the agents’ velocities is critical in determining the coherent
state adopted. Specifically, to obtain the translating, rotating
and degenerate rotating states asymptotically in time (structures
in which the individuals’ velocities are perfectly aligned), one
requires a high alignment of the initial particles’ velocities; oth-
erwise, the swarm will adopt the ring state. However, how high
an alignment is needed depends on the specific choice of (a, τ).
Our results indicate that it is easier to obtain aligned states
for larger values of the coupling constant a. Unfortunately, it
is not feasible to obtain analytic basin boundaries in this in-
finite dimensional system. In principle, one may approximate
such boundaries by performing prohibitively extensive numeri-
cal simulations where the space of history functions is restricted
in some way. Therefore, the computation of basins of attraction
is outside the scope of this work and is left for future research.

For the nondegenerate and degenerate rotating states as well
as for the translating state, the approximation we made when
neglecting the fluctuation terms in (9) is entirely valid since in
the noiseless case all agents collapse to the center of mass. In
the case of the ring structure, these fluctuation terms are not
necessarily small. However, in (7), all fluctuation terms with
the exception of the one containing the factor 1

N

∑N
i=1 |δṙi |2

approximately cancel out in the long time limit, due to the
symmetry in the distribution of the agents. The fluctuation term
that remains becomes equal to one in the long time limit. This
has the effect of eliminating the self-propulsion of the center of
mass and what remains is solely cubic dissipation.

The following sections contain detailed discussion regarding
the spatiotemporal scales of each coherent structure.

A. Ring State

The analysis of Appendix A shows that the radius and angular
frequency of the swarm particles on the ring state is given by

ρj =
1√
a
, θ̇j = ±

√
a (24)

so that particles move at unit speed ρj θ̇j = ±1.
We have numerically computed the radius and angular fre-

quency for different values of a and τ within the region in which
the mean field approximation gives a stable stationary center of
mass (see Fig. 4). Fig. 4(a) and (b) shows that there is an ex-
cellent agreement between the numerical simulations and the
analytical result given by (24). It is worth noting that the condi-
tion given by (29) and used to derive (24) is satisfied in the long
time limit in our simulations.

B. Rotating State

We show in Appendix B that the circular orbit of the rotating
state has radius ρ0 and frequency ω that satisfy the following
relations:

ω2 =a · (1 − cos ωτ) (25a)

ρ0 =
1
|ω|

√

1 − a
sinωτ

ω
. (25b)
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Fig. 4. Comparison of numerical simulations (red circular markers) with the
analytical expressions (continuous blue curve) given by (24) for (a) the radius
and (b) the frequency of the ring state.(c) For each value of a, the time delay
was chosen as τ = 1/(a − 1/4)1/2 (black circular markers).
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Fig. 5. In (a, τ ) space, we plot Hopf (blue) and pitchfork (red) bifurcation
curves and the curve aτ 2 = 2, where the first limit cycle ceases to exist by
having its radius diverging to infinity (green).

Equations (25a) and (25b) can have as many solutions as de-
sired by choosing a and τ large enough. However, a careful
analysis reveals that the solutions to (25a) and (25b) are gener-
ated exactly along the Hopf curves of our previous mean field
analysis and represent the same limit cycles of that analysis [see
Fig. 1(a)]. The expressions in (25a) and (25b), thus, determine
the spatiotemporal scales of these circular orbits beyond the
Hopf curves where they are born. Our analysis also shows that
the circular limit cycle that is created on the first member of
the Hopf bifurcation curves persists to the left of the pitchfork
bifurcation curve and then ceases to exist as its radius diverges
to infinity on the curve aτ 2 = 2 (see Fig. 5). Moreover, nu-
merical simulations of the mean field equations reveal that both
the translating state and the rotating state are linearly stable for
(a, τ) pairs inside the wedge between the curve aτ 2 = 2 and
the pitchfork bifurcation curve aτ = 1 above the BT point.

Fig. 6(a)–(d) shows the excellent agreement between numer-
ical simulations and the analytical results, which are given by
(25a) and (25b), for different values of a and τ .

Interestingly, in Fig. 6(c), we note that in the asymptotic time
limit the collapsed agents move at a speed greater than one,
the speed at which agents would tend to move in the absence
of coupling. This is explained by noting that the ratio of the
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Fig. 6. Comparison of numerical simulations (red circular markers) with
the analytical expressions (continuous blue curve) given by (25a) and (25b)
for (a) the radius, (b) the period, and (c) the speed of the collapsed cir-
cular orbit. (d) For each value of a, the time delay was chosen as τ =
2/(2a − 1)1/2 arctan((2a − 1)1/2/(1 − a)) (black circular markers) to as-
sure asymptotic time convergence to the collapsed circular orbit state.

time delay to the period of oscillations is such that the delayed
position of the collapsed agents R(t − τ) is ahead of the present
position R(t). The attraction that an individual particle feels to
the delayed position of the rest of the swarm forces the whole
system go faster.

C. Degenerate Rotating State

A degenerate version of the rotating state is possible when the
initial motion of the swarm is restricted to a line, since, in this
case, it follows from (1a) and (1b) that the swarm will remain
on such a line for all times. As shown in Appendix C, we may
assume that the motion of the collapsed swarm occurs on the
X = Y line of the center of mass coordinates and then use a
finite Fourier mode approximation of the ensuing dynamics. An
approximation in terms of just three modes gives

X(t) = Y (t) = 2c1 cos ωt + 2|c3 | cos(3ωt + φ3) (26)

where ω, c1 , c3 , and φ3 are obtained by solving (42a) and (42b)
numerically.

Fig. 7(a)–(d) shows a comparison between our analytical re-
sults given by (42a) and (42b) and results obtained using numer-
ical simulation for the amplitude, period, and maximum speed
of oscillation for different values of a and τ . There is an ex-
cellent agreement in both amplitude and period between our
analysis and the numerical simulations [see Fig. 7(a) and (b)].
The agreement for the speed of motion is very good as well,
but the theoretical estimate is shifted slightly with respect to
the results from simulations [see Fig. 7(c)]. As in the collapsed
circular orbit, we note that the collapsed set of particles have a
maximum speed which exceeds one, the speed that individual,
uncoupled particles acquire in the long-time limit. As before,
this effect arises from the attraction that the current particle po-
sition R(t) feels toward the delayed position R(t − τ) when the
latter lies in the direction of motion of the collapsed particles.
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Fig. 7. Comparison of numerical simulation (red circular markers) with
the analytical expressions (continuous blue curve) given by (42a)–(42b) for
(a) the amplitude, (b) period, and (c) the maximum speed of the collapsed
straight line orbit. (d) At each value of a, the time delay was chosen as
τ = 2/(2a − 1)1/2 arctan((2a − 1)1/2/(1 − a)) (black circular markers) to
ensure asymptotic time convergence to the collapsed-straight line orbit state.

VI. EFFECTS OF NOISE ON THE SWARM

In the absence of noise, the initial alignment of the swarm
particles is critical in determining the asymptotic behavior of the
swarm (see Section V). When noise is introduced, the interplay
of coupling strength, time delay, and noise intensity gives rise
to very interesting behavior due to fluctuations in the particles’
alignment. Specifically, our studies show that if the coupling
strength a and/or the time delay τ are below a certain limit, then
the presence of noise promotes swarm transitions from aligned
into misaligned coherent states. More surprising, however, is
that if the coupling strength a and/or the time delay τ are big
enough, then there is a noise intensity threshold that forces a
transition in the swarm from misaligned into aligned states. In
addition, we show that for these high values of a and/or τ , the
system presents an interesting hysteresis phenomenon when the
noise intensity is time dependent.

For the purpose of these studies, we define the alignment of
particle j with the rest of the swarm as the cosine of the angle
between the velocity of particle j and the velocity of the swarm
as a whole

cos θj =
ṙj · Ṙ
|ṙj ||Ṙ|

. (27)

Therefore, the alignment of individual particles ranges from −1
to 1. A good measure of the overall alignment of the swarm is
furnished by the ensemble average of these cosines given as

Mean swarm alignment =
1
N

N∑

j=1

cos θj =
1
N

N∑

j=1

ṙj · Ṙ
|ṙj ||Ṙ|

.

(28)
We first carry out a numerical simulation with coupling con-

stant a = 0.5 and noise standard deviation σ = 0.05 (noise in-
tensity D = 0.00125). At t = 50, a time delay of τ = 0.5 is
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Fig. 8. Time evolution of the ensemble average of (a) the particle distance
to the center of mass and (b) the mean particle alignment showing how the
particle alignment breaks up due to the effects of noise. For long times, the
swarm converges to a ring state. The parameter values of a = 0.5 and τ = 0.5
are associated with region A of Fig. 3. The time delay is turned on at t = 50,
and the noise standard deviation is σ = 0.05 (D = 0.00125).

turned on. These parameters correspond to region A of Fig. 3.
Initially, we place all particles at the origin and align their veloci-
ties by choosing ẋj = 1 and ẏj = 1 for all particles. We describe
the behavior of the swarm by following the ensemble averages
of the particle distances to the center of mass [see Fig. 8(a)] and
of the particle alignment [see Fig. 8(b)] as functions of time.
Before the time delay is turned on at t = 50, the swarm is in
a translating state with particles slightly spread out from the
center of mass in a “pancake” shape, as described in [23], with
an ensemble alignment close to one. Once the delay is turned
on, the translating state is broken up and the swarm converges to
the ring state in which the mean particle alignment is near zero.
The radius of the ring obtained in this numerical simulation
matches the theoretical result [see (24)] that predicts a radius of
1/
√

a =
√

2 ≈ 1.41. A completely analogous situation ensues
for parameters in region B of Fig. 3 (results not shown). In ad-
dition, in both cases, the swarm will immediately converge to
the ring state if the swarm velocities are not sufficiently aligned
at time zero. We, thus, conclude that for these choices of (a, τ)
pairs, the noise misaligns the particles’ velocities and forces a
transition into the ring state.

In contrast with the cases discussed earlier, for parameters in
region C of Fig. 3, a sufficiently large noise intensity promotes
transitions from misaligned to aligned states. We show this by
comparing the results of a series of simulations for different
values of the noise standard deviation σ. The simulations are
divided into two cases that differ only on the initial conditions
for the swarm particles. In all simulations, the coupling constant
a = 2 and a time delay of τ = 2 is turned on at t = 50. In the first
case, all particles start from the origin with identical velocities
ẋj = 1 and ẏj = 1. In the second case, all swarm particles are
initially distributed uniformly on the unit square and are at rest.

In these simulations, the final state of the swarm may be vi-
sualized by plotting the mean swarm alignment after transients
have decayed (t = 300) as a function of noise intensity for the
first case [see Fig. 9(a)] and the second case [see Fig. 9(b)].
In the first case of simulations, the high initial alignment of
particles’ velocities forces the swarm to converge to a compact
rotating state independent of noise intensity. However, the rota-
tional state is destroyed if the noise standard deviation is bigger
than σ ≈ 0.8 [see Fig. 9(a)]. The situation is more interesting
and complex for the second set of simulations. For low-noise
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Fig. 9. Asymptotic value of the mean particle alignment for (a) particles start-
ing with perfectly aligned velocities at time zero and (b) for particles distributed
uniformly over the unit square and starting from rest for different values of the
noise standard deviation σ. The parameter values of a = 2 and τ = 2 (turned
on at t = 50) are associated with a location in region C of Fig. 3.
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Fig. 10. Time evolution of the ensemble average of (a) the particle distance to
the center of mass and (b) the mean particle alignment showing how the swarm
transitions from a ring state into a compact, rotational state with alignment
close to one. The parameter values of a = 2 and τ = 2 (turned on at t = 50)
and σ = 0.4 (D = 0.08) are associated with region C of Fig. 3. Particles are
initially distributed uniformly over the unit square and start from rest.

intensities (σ � 0.26), the low initial alignment of the particles
leads the swarm to converge to a ring state with near zero mean
alignment [see Fig. 9(b)]. A noise standard deviation just be-
yond the threshold of σ ≈ 0.26 displays an interesting effect.
As the σ ≈ 0.26 threshold is crossed, the swarm transitions
from the ring state into the rotating state with high mean align-
ment. An examination of the full simulation data reveals that
the transition occurs as an increasing group of particles gradu-
ally becomes aligned and eventually absorbs all the remaining
particles. A sufficient amount of noise is necessary for this tran-
sition, since it allows each particles’ velocity vector to probe
many directions until finally enough of them become trapped
in a “potential well” of alignment with other particles. As with
the first case of simulations, a noise standard deviation big-
ger than σ ≈ 0.8 breaks up the rotating state. Fig. 10 clearly
shows the transition from the ring to the compact, rotational
state through the time evolution of the ensemble averages of the
particle distances to the center of mass and of the mean particle
alignment.

Further studies on the switching behavior between coherent
states of the swarm demonstrate that the system exhibits a hys-
teresis phenomenon. With the swarm system starting on the
ring state with noise standard deviation of σ = 0.24, one can
force a transition into the rotating state by increasing the noise
to σ = 0.26. However, even if the noise is lowered down to
σ = 0.02, the swarm remains in the rotating state with a high-
velocity alignment [see Fig. 11(a) and (b)]. Nevertheless, it is
possible to return the swarm to the ring state if, once in the ro-
tating state, the noise is raised to very high amounts (σ = 1) for
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Fig. 11. Time evolution of (a) mean particle alignment for example 1,
(b) noise standard deviation for example 1, (c) mean particle alignment for
example 2, and (d) noise standard deviation for example 2. The results show
how a time-dependent noise intensity may be used to force swarm transitions.
The parameter values of a = 2 and τ = 2 (turned on at t = 10) are associated
with region C of Fig. 3. Particles are initially distributed uniformly over the unit
square and start from rest.

a sufficient amount of time and then dropped suddenly to a very
low value (σ = 0.05). The high noise levels serve to completely
misalign the particles’ velocities and allow them to converge to
the ring once the noise levels are below σ � 0.26.

VII. CONCLUSION

In this paper, we analyzed the dynamics of a self-propelling
swarm where individuals interact with a communication time
delay in the presence of noise. Using a mean field approximation
in the deterministic case, we analytically obtained the complete
bifurcation picture in the parameter space of coupling strength
and communication time delay. This analysis shows how dif-
ferent combinations of coupling strength and time delay induce
the swarm to adopt different coherent structures asymptotically
in time. Our bifurcation studies demonstrated the existence of
a Bogdanov–Takens point, where the stationary center of mass
solution has a double zero eigenvalue, which is critical in orga-
nizing the dynamics of the swarm.

The stable patterns that are possible for this system have
several applications for autonomous vehicles. More detailed ap-
plications for each pattern are as follows: 1) The translational
state may be used for target tracking and group transport [11],
[17]. 2) The ring state should prove useful in terrain coverage
and regional surveillance [39], [40]. 3) The rotating state may be
exploited in obstacle avoidance, boundary tracking, and surveil-
lance [11], [15], [40]. In addition, we believe all three patterns
are applicable to the problem of environmental sensing [13],
[16].

In numerical experiments with noise, we showed that the
interplay of coupling strength, time delay, and noise intensity
may give rise to interesting switching behavior from one coher-
ent structure to another. We found that if the coupling strength
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a and/or the time delay τ are below a certain limit, then the
presence of noise induces transitions from states in which the
alignment of the particles’ velocities is high into states with
low alignment. More surprising, however, is that if the coupling
strength a and/or the time delay τ are big enough, then there is
a noise intensity threshold that forces a transition in the swarm
from misaligned into aligned states. In addition, by using a time-
dependent noise intensity at these high values of a and/or τ , we
show that the system exhibits hysteresis since the swarm’s tran-
sitions are not easily reversible. We note that analytical results
on the effects of noise on delay-coupled swarms are not easy
to obtain. Two examples relevant to our work are given in [23]
and [24], where the authors investigate models similar to the
one presented here but without time delay.

Realistic application of the model treated here to the motion
of multirobot systems requires local repulsion among individ-
uals to be taken into account. We have simulated the swarm
model with the addition of a repulsive interagent potential of
exponential form Uij = cr exp (−|ri −rj |

Lr
). These simulations

demonstrate (results not shown) that the coherent patterns we
discussed in this article persist when the characteristic repulsion
length Lr and repulsion strength cr between robots are small
compared with global attraction parameters. Stronger repulsion
can destabilize the coherent structures.

Recently, systems with nonuniform time delays have received
much attention. For example, the important question of synchro-
nization in networks communicating at randomly distributed
time delays has been recently investigated [41], [42]. In prac-
tical applications, the case of differing (and even time varying)
time delays between agents may be treated similarly to the case
of a single delay by using a data buffer [27]. The idea is to iden-
tify an upper bound to the time delay τmax between all agent
pairs and then design the agents so that the actuation occurs
when the data buffer of size τmax is full.

As part of our ongoing work, we are extending our investiga-
tions for the cases in which 1) the communication time delays
vary between different pairs of agents, and 2) the communication
graph is nonglobally coupled. In realistic settings, both of these
cases may occur due to the effects of the spatial distribution
of agents such as signal travel times and imperfect transmis-
sion arising, for example, from complex terrain topography or
component malfunction. In the case of communication delays
that differ among different pairs of agents (though constant in
time), our preliminary results show some patterns analogous to
the ones observed here, but with much more added complexity.
The present investigation lays a good foundation on which to
base the study of these more complicated cases.

In summary, our results aid in understanding the stabil-
ity of complex coherent structures in swarming systems with
time-delayed communication and in the presence of a noisy
environment. Although our analytical and numerical results
were obtained using a model with linear, attractive interac-
tions, our analysis gives useful insight for the study of mod-
els with more general forms of time-delayed coupling between
agents. Our results may prove to be valuable for the control of
man-made vehicles where actuation and communication are de-

layed, as well as in understanding swarm alignment in biological
systems.

APPENDIX A

ANALYSIS OF THE RING STATE

The swarm ring state is obtained when the center of mass
is stationary. For the solution R =constant to satisfy (7), we
require

N∑

i=1

δṙ2
i δṙi = 0. (29)

We simplify (8) by taking R =constant and using (29), we
obtain

δr̈j =
(
1 − δṙ2

j

)
δṙj − aδrj −

a

N
δrj (t − τ). (30)

We consider the large system size limit N → ∞ and we drop
the delayed term. The resulting equations are simply ODEs and
so the analysis below shows that the ring orbit is not depen-
dent on having time delays in the system. Writing (30) in polar
coordinates δxj = ρj cos θj and δyj = ρj cos θj , we obtain

ρ̈j = (1 − ρ̇2
j − ρ2

j θ̇
2
j )ρ̇j + ρj θ̇

2
j − aρj (31a)

ρj θ̈j = (1 − ρ̇2
j − ρ2

j θ̇
2
j )ρj θ̇j − 2ρ̇j θ̇j . (31b)

Equations (31a) and (31b) have the trivial solution ρj = 0 as
well as a ring solution

ρj =
1√
a
, θ̇j = ±

√
a (32)

in which particles move at unit speed ρj θ̇j = ±1.

APPENDIX B

ANALYSIS OF THE ROTATING STATE

In the noiseless rotating state, all particles collapse to a point,
δri = 0, and the equation for the center of mass given by (7)
simplifies considerably to

R̈ = (1 − Ṙ2)Ṙ − a(R(t) − R(t − τ)). (33)

We write R = (X,Y ) and introduce polar coordinates X =
ρ cos θ and Y = ρ sin θ to obtain

ρ̈ = (1 − ρ̇2 − ρ2 θ̇2)ρ̇ + ρθ̇2 − a(ρ − ρτ cos(θ − θτ )) (34a)

ρθ̈ = (1 − ρ̇2 − ρ2 θ̇2)ρθ̇ − 2ρ̇θ̇ + aρτ sin(θ − θτ ) (34b)

where we have written ρτ ≡ ρ(t − τ) and θτ ≡ θ(t − τ).
Equations (34a) and (34b) have a circular orbit solution, i.e.,
ρ = ρ0 and θ = ωt + θ0 , where

ω2 = a · (1 − cos ωτ) (35a)

ρ0 =
1
|ω|

√

1 − a
sinωτ

ω
(35b)

and θ0 is obtained from the initial conditions. In the main text,
we discuss the behavior of the solutions to (35a) and (35b).



MIER-Y-TERAN-ROMERO et al.: COHERENT PATTERN PREDICTION IN SWARMS OF DELAY-COUPLED AGENTS 1043

APPENDIX C

ANALYSIS OF THE DEGENERATE ROTATING STATE

When the motion of the whole swarm is initially constrained
to a line, (1a) and (1b) dictate that the swarm will remain on this
line for all times. If the coupling parameter a and/or the time
delay τ are large enough, the resulting motion is a degenerate
form of the rotating solution in which the swarm moves back
and forth along a straight line.

In the case without noise, all particles collapse to a point,
δri = 0, and the line along which motion occurs is arbitrary;
here, we use X = Y . The problem reduces to analyzing a single
delay equation given by

Ẍ = (1 − 2Ẋ2)Ẋ − a (X(t) − X(t − τ)) . (36)

We find a solution using Fourier analysis. We let

X(t) =
∞∑

n=−∞
cneinωt (37)

where the coefficients satisfy cn = c∗−n in order to ensure that
X(t) is a real quantity. Substituting (37) into (36), we get for
the nth mode

−n2ω2cn = inωcn + 2iω3
∑

�,m �=0

c�cm cn−�−m �m(n − � − m)

− acn (1 − e−inωτ ) (38)

for n = 0, 1, 2, . . .. The n = 0 equation is
∑

�,m �=0

c�cm c−�−m �m(� + m) = 0 (39)

which does not involve c0 . Unsurprisingly, c0 is undetermined
since the position of the center of mass may be translated in
space without modifying the dynamics of the system.

We now approximate the motion of the center of mass by
keeping the first three modes. By appropriately choosing the
time origin, we may take c1 to be purely real and positive.
In contrast, c2 and c3 are complex quantities which we write
as ci = |ci |eiφi , for i = 2, 3. The equations for the first three
modes n = 1, 2, 3 become

− ω2c1 = iωc1

+ 2iω3 (
−3c3

1 − 36c2
2c

∗
3 − 54c1 |c3 |2 − 24c1 |c2 |2 + 9c2

1c3
)

− ac1(1 − e−iωτ ), (40a)

− 4ω2c2 = 2iωc2

+ 2iω3 (
−108c2 |c3 |2 − 36c1c

∗
2c3 − 24c2 |c2 |2 − 12c2c

2
1
)

− ac2(1 − e−2iωτ ), (40b)

− 9ω2c3 = 3iωc3

+ 2iω3 (
−18c3c1 − 72c3 |c2 |2 − 81c3 |c3 |2 − 12c2

2c1 + c3
1
)

− ac3(1 − e−3iωτ ). (40c)

In addition, the condition from (39) becomes

6(c2c
∗
3 − c∗2c3) − c1(c2 − c∗2) = 0. (41)

Separating (40a)–(40c) and (41) into real and imaginary parts
yields a system of seven equations (since the real part of (41) is
satisfied automatically) for the six unknowns: ω, c1 , |c2 |, φ2 , |c3 |,
and φ3 . These equations cannot be satisfied in general. However,
if |c2 | = 0, then the equation for mode n = 2 [see (40b)] and
(41) are satisfied automatically, leaving four equations

−ω2c1 = iωc1 + 2iω3 (
−3c3

154c1 |c3 |2 + 9c2
1c3

)

− ac1(1 − e−iωτ ) (42a)

−9ω2c3 = 3iωc3 + 2iω3 (
−18c3c1 − 81c3 |c3 |2 + c3

1
)

− ac3(1 − e−3iωτ ). (42b)

for the four unknowns ω, c1 , |c3 |, and φ3 . Equations (42a) and
(42b) may be solved numerically and permit one to approximate
the motion of the center of mass in the form

X(t) = Y (t) = 2c1 cos ωt + 2|c3 | cos(3ωt + φ3). (43)

The frequency of the straight line orbit of the swarm center
of mass is approximately equal to the frequency of the circular
orbit in (25a). In addition, the amplitude of oscillation of the
straight line orbit is approximately equal to the radius of the
circular orbit of (25b) divided by a factor of

√
6.
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[21] G. Flierl, D. Grünbaum, S. Levins, and D. Olson, “From individuals to
aggregations: The interplay between behavior and physics,” J. Theor.
Biol., vol. 196, no. 4, pp. 397–454, 1999.

[22] I. Couzin, J. Krause, R. James, G. Ruxton, and N. Franks, “Collective
memory and spatial sorting in animal groups,” J. Theor. Biol., vol. 218,
no. 1, pp. 1–11, 2002.

[23] U. Erdmann and W. Ebeling, “Noise-induced transition from translational
to rotational motion of swarms,” Phys. Rev. E, vol. 71, art no. 051904,
2005.

[24] J. Strefler, U. Erdmann, and L. Schimansky-Geier, “Swarming in three
dimensions,” Phys. Rev. E, vol. 78, art no. 031927, 2008.

[25] E. Forgoston and I. Schwartz, “Delay-induced instabilities in self-
propelling swarms,” Phys. Rev. E, vol. 77, art no. 035203(R), 2008.

[26] M. Kimura and J. Moehlis, “Novel vehicular trajectories for collective
motion from coupled oscillator steering control,” SIAM J. Appl. Dyn.
Syst., vol. 7, pp. 1191–1212, 2008.

[27] B. Yang and H. Fang, “Forced consensus in networks of double integrator
systems with delayed input,” Automatica, vol. 46, pp. 629–632, 2010.

[28] M. Aldana, V. Dossetti, C. Huepe, V. Kenkre, and H. Larralde, “Phase tran-
sitions in systems of self-propelled agents and related network models,”
Phys. Rev. Lett., vol. 98, art no. 095702, 2007.

[29] N. MacDonald, Time Lags in Biological Models, 1st ed. Berlin, Ger-
many: Springer-Verlag, 1978.

[30] N. MacDonald, Biological Delay Systems Models: Linear Stability The-
ory, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 1989.

[31] I. Ncube, S. A. Campbell, and J. Wu, “Change in criticality of synchronous
Hopf bifurcation in a multiple-delayed neural system,” Fields Inst. Com-
mun., vol. 36, pp. 179–193, 2003.

[32] S. Bernard, J. Bélair, and M. Mackey, “Bifurcations in a white-blood-cell
production model,” C. R. Biol., vol. 327, pp. 201–210, 2004.

[33] M. Mackey, M. Santillan, and N. Yildirim, “Modeling operon dynamics:
The Tryptophan and lactose operons as paradigms,” C. R. Biol., vol. 327,
pp. 211–224, 2004.

[34] M. Mackey and M. Santillan, “Why is the lysogenic state of phage-λ
is so stable: A mathematical modelling approach,” Biophys. J., vol. 86,
pp. 75–84, 2004.

[35] G. Tiana, M.H. Jensen, and K. Sneppen, “Time delay as a key to apoptosis
in the p53 network,” Eur. Phys. J. B, vol. 29, pp. 135–140, 2002.

[36] M.H. Jensen, K. Sneppen, and G. Tiana, “Sustained oscillations and time
delays in gene expression of protein Hes1,” FEBS Lett., vol. 541, pp. 176–
177, 2003.

[37] N. Monk, “Oscillatory expression of Hes1, p53, and NF-κB driven by
transcriptional time delays,” Curr. Biol., vol. 13, pp. 1409–1413, 2003.

[38] K. Engelborghs. (2000). “DDE-BIFTOOL: A MATLAB package for bi-
furcation analysis of delay differential equations,” Dept. Comput. Sci.,
K. U. Leuven, Leuven, Belgium, Tech. Rep. TW-305. [Online]. Avail-
able: http://www.cs.kuleuven.ac.be/∼twr/research/software/delay/ddeb
iftool.shtml

[39] J. Svennebring and S. Koenig, “Trail-Laying Robots for Robust Terrain
Coverage,” in Proc. IEEE Int. Conf. Robot. Automat., 2003, pp. 75–82,
art no. 031927.

[40] D. Vallejo, P. Remagnino, D. N. Monekosso, L. Jiménez, and C. Gonzalez,
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