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ABSTRACT

We present a strategy to control the mean stochastic switching times of general dynamical systems with multiple equilibrium states subject to
Gaussian white noise. The control can either enhance or abate the probability of escape from the deterministic region of attraction of a stable
equilibrium in the presence of external noise. We synthesize a feedback control strategy that actively changes the system’s mean stochastic
switching behavior based on the system’s distance to the boundary of the attracting region.With the proposed controller, we are able to achieve
a desired mean switching time, even when the strength of noise in the system is not known. The control method is analytically validated using
a one-dimensional system, and its e�ectiveness is numerically demonstrated for a set of dynamical systems of practical importance.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5090113

Noise is an inherent phenomenon in all physical dynamical sys-
tems. Thus, the behavior of a dynamical system under the in�u-
ence of noise has been a widely studied topic. In particular, the
e�ect of small noise on the stability of a system has generated sig-
ni�cant attention in the literature. It has been shown that under
the in�uence of noise, a systemcanbemade to transitionout of the
its deterministically stable states. While these are rare occurences
for small noise, they have a signi�cant impact on the overall
behavior of the system. The expected time for such a transition
to occur, i.e., the mean switching time, is an important charac-
teristic in such systems. In this work, we show how an external
control could be used to enhance or abate this switching behavior
and synthesize a feedback control strategy that actively changes
the mean switching time to a desired value. This enables one to
control the dwell time of the system in a given basin of attraction
to a desired value. We analyze the controller using a representa-
tive one-dimensional system and demonstrate the controller on a
set of dynamical systems with practical importance.

I. INTRODUCTION

The trajectories of a deterministic dynamical system are com-
pletely de�ned by the initial conditions. With initial conditions in
the region of attraction of a stable equilibrium, the system is expected
to approach the equilibrium state and remain there inde�nitely. One

would expect this deterministic behavior to be only slightly altered
in the presence of small noise, since switching between stable states
would require the system to overcome a large activation barrier.How-
ever, one often sees these types of rare noise-induced switching events
in a variety of physical and biological systems. A few examples of
phenomena that exhibit rare transition events include extinction of
disease1,2 or species,3 switching between gene states4ormagnetization
states,5 and transitions in ocean �ows.6,7

In the presence of noise, the system trajectories are no longer
prescribed by the initial conditions. Instead, the behavior of the sys-
tem is now described by the probability density which indicates the

likelihood of achieving a particular system state.With this viewpoint,

metastable equilibria will be peaks in this probability landscape. One
important feature of interest when studying noise-induced transi-
tions is the optimal escape pathway from a metastable state or the
optimal transition pathway from one metastable state to another. Of
the many paths that lead to escape from ametastable state, or switch-
ing between two such states, there exists a most probable transition
path. This path is known as the optimal escape or switching path. It
is of great importance in a variety of applied problems to determine
this optimal path since knowledge of the path then enables the deter-
mination of the mean time to escape from a metastable state or to
switch from one metastable state to another.

While the noise that induces these rare transition events may
be internal or external to the system, in this article, we only consider
external noise. Mathematically, the e�ect of external noise is often
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described using a Langevin equation or the associated Fokker–Planck
equation (though the dynamics of external noise may sometimes
be described by a master equation8). Feynman famously pointed
out that each noise realization corresponds to a particular trajec-
tory of the system, and, therefore, the probability density of realiza-
tions of trajectories is determined by the probability density of noise
realizations.9This idea can be used to formulate a variational problem
to �nd the optimal path that ultimately reduces to considering trajec-
tories of an auxiliary Hamiltonian dynamical system. One can solve
for the Hamiltonian dynamics, either analytically or numerically, for
the most probable (i.e., optimal) path of escape or switching.10,11

The mean switching time (MST) essentially describes the dwell
time of the system in a given basin of attraction, and as such, it is an
important characteristic of the system. Accordingly, there has been
an increased interest in the literature on using an external control to
abate or enhance the mean switching time.6,12,13However, the control
strategies proposed in those works cannot control the switching time
to a desired value. This is in part due to the di�culty of obtaining a
closed form expression for the MST with fully described parameters,
whose computation does not require experimentation or simulation.
Such analytical expressions are only available for a very limited set
of low-dimensional systems, e.g., escape from a one-dimensional
potential well.14

In contrast, in the current work, we present a control strategy
which uses limited control to achieve a desired MST. The strat-
egy relies on knowledge about the basin boundaries of the region
of attraction of the stable equilibrium of the deterministic system.
These basin boundaries can be obtained using a variety of methods,
including �nite-time Lyapunov exponent (FTLE) computations.15

The required actuation for the strategy is minimal since the actual
transition is precipitated by the noise in the system.We developed the
approach in our previous work,16 where we exploited noise-driven
transitions to control the dwell time of a marine robot operating in a
gyre �ow. In this work, we generalize the approach to a broader class
of dynamical systems. The method enables one to control the MST
of a stochastic dynamical system with metastable states to a desired
value. To demonstrate the generality of the approach, we evaluate our
method on two dynamical systems: (1) a double-gyre �ow �eld and
(2) a damped pendulum. The double-gyre �ow is often used tomodel
large scale circulations in the ocean,17while the damped pendulum is
representative of many practical dynamical systems, e.g., phase dif-
ference across a Josephson junction.18 To the best of our knowledge,
this is the �rst attempt at using control to obtain a desired MST.

The rest of the article is organized as follows. In Sec. II, the back-
ground of the stochastic switching problem is presented while the
e�ect of an external control �eld on the MST is analyzed in Sec. III.
The proposed control strategy is presented in Sec. IV, and validation
of the strategy for di�erent systems is presented in Sec. V. The article
contains concluding remarks in Sec. VI.

II. BACKGROUND

We consider a dynamical system that is a�ected by external
noise. The system is modeled using the Langevin equation,

ẋ = F(x) + η(t), (1)

where x ∈ R
n is the state variable, F is the nominal system, and η(t)

is an uncorrelated white noise term where each component has zero
mean and a standard deviation of σ =

√
2D, where D is the noise

intensity. In (1), F describes a deterministic nonlinear system with
multiple equilibrium states. In addition to modeling errors, η(t) can
also capture sensing, actuation, and environmental uncertainties. In
the absence of noise, all trajectories of the system will approach the
stable equilibrium states of the system. With the addition of exter-
nal noise, the system trajectories will be governed by individual noise
realizations. In fact, each realization of the noise η results in a corre-
sponding trajectory of the state variable x. The trajectories will now
be concentrated around the metastable equilibria, and the probabil-
ity density of the trajectories over the state space will have peaks near
these equilibria (see Fig. 1). Even with in�nitesimally small noise,
there are rare noise-induced events in which the system transitions
from one metastable state to another. The smaller the noise intensity,
the larger the MST will be and vice versa.

Since each realization of the noise η results in a corresponding
trajectory of the state variable x, the probability of occurrence of a
switch from one metastable state to another is governed by the prob-
ability of occurrence of the corresponding noise realization η(t).9

Of all the possible escape trajectories from a metastable state, there
exists a trajectory that is probabilistically most likely to occur. It has
been shown10,19 that the probability P of occurrence of a given noise
trajectory is

P ∝ e−R/D, (2)

where R is the action and is given as

R = 1

2

∫ tf

t0

η(t)Tη(t)dt = 1

2

∫ tf

t0

[ẋ − F(x)]T[ẋ − F(x)]dt. (3)

FIG. 1. Probability density of escape trajectories obtained from Monte Carlo sim-
ulations of the double-gyre flow given in (6) for parameters A = 1, s = 1, and
µ = 1. The equilibrium point (yellow cross) is now a peak in this probabilistic
landscape.
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Thus, themost probable switching path is the one with theminimum
action given by

R = min
x(t)

1

2

∫ ∞

−∞
[ẋ − F(x)]T[ẋ − F(x)]dt. (4)

Given an optimal path, (1) can be used to �nd the associated opti-
mal noise realization. In the case of small noise, the switching rate is
directly proportional to the probability of observing this optimal, or
most probable, noise pro�le as all other noise realizations are expo-
nentially less likely to occur.20 The mean switching time (MST) can,
therefore, be approximated by

TE = beR/D, (5)

where b is a prefactor determined through numerical simulation or
an experiment. Figure 2(a) shows the phase portrait of a double-gyre

FIG. 2. (a) Phase portrait of the double-gyre flow for A = 1, s = 1, and µ = 1.
The black cross indicates the stable equilibrium at the center of the left gyre,
and the red cross indicates the saddle point at the lower right corner; (b) Loga-
rithm of the MST TE vs 1/D for the double-gyre flow obtained using Monte Carlo
simulations. The simulation results are consistent with the form of the theoreti-
cally predicted relationship between the MST and noise intensity given in (5). Red
crosses are simulation data points, and the solid blue line is the line of best fit.

�ow �eld given by

F(x, y) =
[

Fx(x, y)

Fy(x, y)

]

=
[

−πA sin( πx
s
) cos(

πy

s
) − µx

πA cos( πx
s
) sin(

πy

s
) − µy

]

, (6)

where A denotes the strength of the �ow, s is a scaling factor for the
gyre dimensions, and µ is a damping coe�cient. Figure 2(b) shows
the mean switching times obtained by performing Monte Carlo sim-
ulations for a range of noise intensities in this �ow �eld for A = 1,
s = 1, and µ = 1. In these simulations, the system is initialized by
placing a particle/sensor near the metastable state at the center of the
left gyre. The particle will stay in the left gyre for a long period of
time, but eventually the noise will cause the particle to undergo an
escape event. The escape from the left gyre to the right gyre occurs
when the particle transitions across the gyre boundary demarcated by
the stable and unstable manifolds of the saddle points �anking each
gyre. In Fig. 2(b), the crosses in red indicate simulation data points,
and the solid line in blue indicates the line of best �t. It can be seen
that the simulation results are consistent with the form of (5), and
the intercept of this line of best �t allows us to obtain an estimate
of the prefactor b. Figure 3 shows the switching path with the min-
imum action of noise, i.e., the optimal switching path or the most
probable switching path (MPSP), overlaid on the probability density
of simulated trajectories leading to escape for the double-gyre sys-
tem. It can be seen that the theoretically predicted MPSP coincides
with the peaks of the probability density function of the simulated
escape trajectories. Figure 4 shows the MPSP for two dynamical sys-
tems: (1) the double-gyre system and (2) the damped pendulum. The
arrows along the path indicate the strength and direction of the noise
pro�le associated with this optimal path, and the basin boundaries
are shown in red. It can be seen that the noise is similar to a control
input that pushes the system toward the basin boundaries.

FIG. 3. Themost probable switching path (MPSP) overlaid on the probability den-
sity of truncated escape trajectories obtained from Monte Carlo simulations of
the double-gyre flow for parameters A = 1, s = 1, and µ = 1. The paths were
truncated to highlight the escape portion of the trajectories.
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FIG. 4. The most probable switching path (the solid black curve) plotted on top
of the phase portrait of (a) a double-gyre flow field and (b) a damped pendulum.
The red line shows the boundary of the attracting region. The MPSP is computed
from a stable equilibrium to one of the saddle points on the boundary, and it is
truncated near the stable equilibrium for clarity. The optimal noise profile, shown
in blue arrows along the MPSP, is directed toward the nearest boundary.

In the limit of small noise, each switching trajectory is a rare
event, and, thus, the events are uncorrelated. Therefore, the switching
events can be considered to be a Poisson process, and the probability
density function of the mean switching times PTE is exponential with
a mean switching time of TE so that

PTE (t) = 1

TE

e
− t

TE , t ≥ 0. (7)

III. STOCHASTIC TRANSITIONS WITH CONTROL

The central theme of this work is the control of the MST
using an external control signal. The controlled system dynamics are
given by

ẋ = F(x) + u(x, t) + η(t), (8)

where u is the control signal. Inspired by the noise pro�le associated
with the optimal switching path (see Fig. 4), a control signal of the
form u = cf(x) is considered. The function f(x) gives the direction of
the control with ‖f(x)‖ = 1, and similar to the most probable noise
pro�le, f(x) is selected to point toward the closest basin boundary.
This form for the control law gives rise to a control signal which is
similar to the optimal noise pro�le that leads to escape. Using (4),
the action of the trajectory that is most likely to result in escape for
this controlled system is given by

R
c = min

x(t)

1

2

∫ ∞

−∞
[ẋ − F(x) − cf(x)]T[ẋ − F(x) − cf(x)]dt. (9)

Let the optimal switching path that is the solution to (9) be denoted
by xc(t). Thus, the action of the most likely noise pro�le can be
rewritten as

R
c = 1

2

∫ ∞

−∞
[ẋc − F(xc) − cf(xc)]T[ẋc − F(xc) − cf(xc)]dt. (10)

When c = 0, the action R0 is given by the solution to the uncon-
trolled case in (4), and the corresponding MPSP is x0(t). Note that,
for an arbitrary c, the optimal path xc(t) depends on c. Using a Taylor

series expansion,

xc(t) = x0(t) + ∂xc

∂c

∣

∣

∣

∣

c=0

c + O(c2). (11)

Thus, for small values of c such that the change in the optimal path is

small, i.e.,
∣

∣

∣

∂xc

∂c

∣

∣

∣
� 1, one has xc(t) ≈ x0(t). For small c, the action of

the MPSP is, therefore, given by

R
c ≈ 1

2

∫ ∞

−∞
[ẋ0 − F(x0) − cf(x0)]T[ẋ0 − F(x0) − cf(x0)]dt

≈ 1

2

∫ ∞

−∞
[ẋ0 − F(x0)]T[ẋ0 − F(x0)]dt

− c

∫ ∞

−∞
f(x0)T[ẋ0 − F(x0)]dt

= R
0 − c

∫ ∞

−∞
f(x0)Tη0(t)dt.

This can be written concisely as

R
c ≈ R

0 − αc, (12)

where

α =
∫ ∞

−∞
f(x0)Tη0(t)dt

and η0(t) is the optimal noise pro�le for the uncontrolled case. Note
that similar to η0, f(x) is always directed toward the basin bound-

ary, and as such f(x0) ≈ η0

|η0(t)| , i.e., f(x
0) and η0 are approximately

parallel. In addition, limt→±∞ η0(t) = 0. Thus, 0 < α < ∞, and the
change in the action due to the external control �eld is

1R = −αc. (13)

Using (5), the change in the mean switching time due to this change
in the action is given by

Tc
E

T0
E

= e1R/D, (14)

where Tc
E and T0

E are the MST for the controlled and uncontrolled
cases, respectively. From (13) and (14), it can be seen that c < 0
implies Tc

E > T0
E. Similarly, c > 0 implies Tc

E < T0
E. Thus, it is evident

that the MST of a system can be changed using an external control
signal of the suggested form. If the dynamical system and the noise
in the system are completely known, (14) can be used to compute
the external control required to achieve a desired MST. However, in
practical systems, these details are often unknown. The synthesis of
a control strategy to obtain a desired MST, in cases where the details
about the dynamical system and/or the noise in the system are not
fully known, is presented in Sec. IV.

IV. CONTROL STRATEGY

From (5), it can be seen the average time required to escape from
one attractor depends on the action as well as the amount of noise in
the system. For a given noise intensity, the MST is governed by the
action of the transition path that is most likely to occur. The objective
of this work is to use a control of the form u = cf(x), in which the
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FIG. 5. (a) Variation of the distance to the closest gyre boundary over time along a
noise-driven switching trajectory in a double-gyre system. The width of the attract-
ing region is s. The red dashed line indicates the distance to the boundary from
the gyre center. (b) The switching trajectory hovers near the stable equilibrium
before exhibiting an almost linear transition toward escape.

parameter c ∈ [−cmax, cmax] can be varied to obtain a desired MST,
Td
E , by changing the action. Since ‖f(x)‖ = 1, cmax corresponds to the

maximum available control authority.
If the noise intensityD, the currentMSTT0

E, and the dynamics of
the systemare fully known, then (13) and (14) can be used to compute
the value of c required to obtain a desiredMST. Typically, most of this
information is not readily available in a real system. Thus, to design a
control strategy to obtain the desired MST, we must �rst understand
the characteristic behavior of a noise-driven switching trajectory in
a dynamical system with multiple stable states. Figure 5(a) shows the
typical variation of the distance d between a point on a trajectory and
the closest basin boundary over time, until escape from the attracting
region through one of the basin boundaries occurs. A simpli�ed d vs
t plot that captures the essential characteristic of the curve in Fig. 5(a)
is shown in Fig. 5(b). Although Fig. 5(a) is generated using a trajec-
tory realization obtained from a double-gyre �ow �eld, this type of
variation for the distance to boundary is typical of switching trajec-
tories in general multistable dynamical systems. A major portion of
the system trajectory is concentrated around the stable equilibrium,
before it suddenly transitions out of the attracting region. The actual
transition itself occurs over a fraction of the overall dwell time, and
near the transition, the d vs t curve is approximately linear. These

FIG. 6. Desired noise-driven switching trajectory with a desired MST of Td

E

(black); actual switching trajectory when T
0
E

< T
d

E
(blue); and actual switching

trajectory when T0
E

> T
d

E
(red). The parameters λs and λt are used to determine

the regions R1, R2, and R3 as described in the text and shown in Fig. 7.

typical characteristics can be used to identify a potential onset of the
escape portion of a trajectory, when neither the noise level of the
system nor the MSTs are known.

A. Controller synthesis

Let T0
E be the “natural” MST of the uncontrolled system for an

unknownnoise level, and letTd
E be the desiredMST. If the noise in the

system is high, then T0
E < Td

E (blue trace in Fig. 6), and if the noise in
the system is low, then T0

E > Td
E (red trace in Fig. 6). Note that T0

E of
the system is unknown. The proposed control strategy selects values
for c depending on the region of the d vs t curve in which the system
is operating at any given time. The three regions, shown in Fig. 7, are
given by

R1 = {(t, d) | 0 < t < (1 − λt)T
d
E , 0 < d ≤ λss/2},

R2 = {(t, d) | t ≥ (1 − λt)T
d
E},

R3 = {(t, d) | 0 < t < (1 − λt)T
d
E , d > λss/2},

where λt and λs are parameters which de�ne the region boundaries.
If (t, d) ∈ R1 (e.g., dashed portion of the blue trace in Fig. 6),

the system’s trajectory is too close to the basin boundary before
the required time has elapsed. According to the simpli�ed d vs t
characteristic curve shown in Fig. 5(b), it is assumed that this is
indicative of the onset of a switching event. Assuming a linear behav-
ior along the escape portion of the trajectory, an estimate for the
current uncontrolled MST can be computed to be

T0
E = t

1 − λt
2d
λss

. (15)

Using (14), the required change in action to obtain the desired MST
can be approximated as

1R = k log

(

Td
E

T0
E

)

,

where k is a user de�ned parameter which governs how aggressive
the control is. Using (13), the control parameter c is set to be

c = max

(

−1R

α
,−cmax

)

. (16)

FIG. 7. The regions of operation used to determine the direction and strength of
the external control field.
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When (t, d) ∈ R2 (e.g., dashed portion of the red trace in Fig. 6),
it is assumed that T0

E ≥ Td
E and that the particle has not started its

transition toward escape. In contrast to the previous case, an estimate
for T0

E cannot be obtained. Furthermore, in order to meet the desired
MST target, the particle must transition out as soon as possible. In
this case, the control parameter is set as

c = cmax.

Therefore, the proposed control strategy is based on making
local assumptions about T0

E and is given by u = cf(x), where c is
de�ned as

c =















max
(

−1R

α
,−cmax

)

(t, d) ∈ R1,

cmax (t, d) ∈ R2,

0 (t, d) ∈ R3,

(17)

and as shown in Sec. III, f(x) is a unit vector pointed toward the
closest basin boundary.

Essentially, the control strategy pushes the agent away from the
basin boundary if it gets close to the boundary before the required
amount of time has elapsed, and it pushes the agent toward the
boundary when the elapsed time is close to the required MST. The
instances at which the control is switched on are governed by the
parameters λs and λt . Note that λt ≤ 1 and 0 ≤ λs ≤ 1. Intuitively,
it can be seen that large values of λs will increase the MST and that
large values of λt will decrease the MST.

B. Analysis of the control strategy

In order to analyze the proposed control strategy and verify its
correctness, the strategy is analyzed using a 1D system. This greatly
simpli�es the analysis while preserving the essential characteristics of
the controlled system. Insights from the 1D system are then used to
select values for λs and λt . Consider a particle in a 1D potential well,
subject to Gaussian noise. The equation of motion of this particle is
given by

ẋ = −∂U

∂x
+ η(t) + u(t), (18)

where x is the position, U represents the potential well (see Fig. 8),
u(t) is the control, and η is Gaussian noise with intensity D. For
the uncontrolled case, i.e., u(t) = 0, it has been shown21–23 that if
1U/D � 1, the average time TE required for a particle to escape the
stable equilibrium at xmin is given by

T0
E = 1

D

∫ x2

x1

e
−
(

Umin
D + U′′

min
2D (x−xmin)2

)

dx

×
∫ A

xmin

e

(

Umax
D − |U′′

max |
2D (x−xmax)

2
)

dx, (19)

where U ′′
min and U ′′

max are the second derivatives of U(x) at xmin and
xmax, respectively, and A is a point away from xmax as shown in Fig. 8.
Further details of this derivation can be found in a recent review
article.23 Considering the exponential fall o� of the integrands and
extending the limits of both integrals from −∞ to ∞, one can show

FIG. 8. Potential well U(x).

that

T0
E = 2π

√

U ′′
min|U ′′

max|
e

1U
D . (20)

This is the well known Kramers’ escape rate for 1D systems.14

Now consider a control of u(t) = c ∂U
∂x

with |c| ≤ cmax < 1. Such
a control results in a controlled 1D system given by

ẋ = −(1 − c)
∂U

∂x
+ η(t). (21)

This is equivalent to considering a potential well Û = (1 − c)U.
Thus, for c < 0, the well becomes deeper and for 0 < c < 1, the well
becomes shallower. SubstitutingU = Û in (19) and (20), one obtains

Tc
E = 2π

(1 − c)
√

U ′′
min|U ′′

max|
e(1−c) 1U

D = e−c 1U
D

1 − c
T0
E. (22)

It can be shown that c < 0 ⇒ Tc
E > T0

E, and 0 < c < 1 ⇒ Tc
E < T0

E

when 1U/D � 1, i.e., c > 0 pushes the particle out toward the
boundary and c < 0 pulls the particle in toward the center of the well.

The corresponding region based control strategy for c as pro-
posed in (17) is given by

c















< 0, xs ≤ x < xmax and t < Tt ,

> 0, t ≥ Tt ,

= 0 otherwise,

(23)

where xs = xmax − λs(xmax − xmin) and Tt = (1 − λt)T
d
E , with

λt ≤ 1 and 0 ≤ λs ≤ 1. In the remainder of this section, we show
that this region based controller is able to achieve any desired
MST within bounds that are dependent on the maximum available
control.

To obtain an expression for the MST under the proposed con-
trol strategy, �rst consider applying a control with c < 0 for xs ≤
x < xmax, without considering the elapsed time [case 1 of the con-
trol strategy in (23)]. In this case, the control action can be written
as u(t) = −|c|(2(x − xs) − 2(x − xmax))

∂U
∂x
, where2 is a Heaviside
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function. Thus, the �rst integral I1 of (19) for the mean escape time
can now be written as

I1 =
∫ xs

x1

e
−
(

Umin
D + U′′

min
2D (x−xmin)2

)

dx

+
∫ x2

xs

e
−(1+|c|)

(

Umin
D + U′′

min
2D (x−xmin)2

)

dx. (24)

Considering that the integrands of both integrals decay exponen-
tially, the lower limit of the �rst integral can be extended to−∞, and
the upper limit of the second integral can be extended to ∞. Thus,

I1 =
√

πD

2U ′′
min

e−
Umin
D

(

1 + erf

(
√

U ′′
min

2D
(xs − xmin)

)

+ e−
|c|Umin

D

√
1 + |c|

(

1 − erf

(
√

(1 + |c|)U ′′
min

2D
(xs − xmin)

)))

. (25)

Using similar arguments, the second integral I2 of (19) can be
written as

I2 =
√

πD

2|U ′′
max|

e
Umax
D

(

2 + erf

(

√

U ′′
max

2D
(xs − xmax)

)

− e
|c|Umax

D

√
1 + |c|

erf

(
√

(1 + |c|)U ′′
max

2D
(xs − xmax)

))

. (26)

In (25) and (26), erf(x) = 2√
π

∫∞
0

e−t2dt. Thus, the expected

MST, when control of c < 0 is enacted for xs ≤ x < xmax, is

Tc
Edist

= 1

D
I1I2. (27)

Next, consider introducing a control with c > 0 when t ≥ Tt .
Due to the stochastic nature of escape events, of the total paths

that escape,
∫ Tt
0

PTE (t)dt of them would have already escaped before
the c > 0 control is switched on at t = Tt . Recalling (7), we know
that PTE (t) is the probability distribution of the escape times before
switching on the c > 0 control, and it is exponentially distributed,

i.e., PTE (t) = 1
TcEdist

e
− t

TcEdist . Thus, the percentage of particles escaping

after turning on the c > 0 control is 1 −
∫ Tt
0

PTE (t)dt, and the mean
escape time for these particles isTt + Tc

E, whereT
c
E is themean escape

time if the c > 0 control is applied ∀t ≥ 0, and is given by (22). Thus,
the expected mean switching time under the full control strategy
proposed in (23) is

T
exp
E =

∫ Tt

0

tPTE (t)dt + (Tt + Tc
E)

(

1 −
∫ Tt

0

PTE (t)dt

)

.

Using (7), this can be simpli�ed as

T
exp
E = Tc

Edist
− (Tc

Edist
− Tc

E)e
− (1−λt )T

d
E

TcEdist , (28)

where Tc
Edist

is given in (27) and Tc
E is the nominal mean switching

time if a control of c > 0 is used ∀t ≥ 0. Note that we have also used
the fact that Tt = (1 − λt)T

d
E , where T

d
E is the desired MST.

For c = 0, it is trivial to see that Tc
E = Tc

Edist
= T0

E. It can be
shown that for 1U/D � 1, ∂Tc

Edist
/∂|c| > 0 and ∂Tc

E/∂c < 0. Thus,
it can be inferred that Tc

Edist
≥ Tc

E, with equality at the trivial case of

c = 0. Using this, one can easily show that
∂T

exp
E

∂λt
< 0 and is continu-

ous for λt ≤ 1. Thus, T
exp
E is minimized at λ = 1 and it is maximized

as λt → −∞. Thus, from (28), it can be seen that

Tc
E ≤ T

exp
E < Tc

Edist
, (29)

with T
exp
E = Tc

E for λt = 1 and T
exp
E → Tc

Edist
for λt → −∞. Thus, for

a given c and λs, there exists λt ≤ 1 that can achieve a desired escape
time in the range established in (29).

As mentioned before, it can be shown that for 1U/D � 1,
∂Tc

Edist
/∂|c| > 0 and ∂Tc

Edist
/∂λs| > 0. In addition,Tc

Edist
|c=0 = T0

E and

Tc
Edist

|λs=0 = T0
E. Thus, themaximumofTc

Edist
occurs at c = −cmax and

λs = 1. Substituting these values in (27), we have

T0
E ≤ Tc

Edist
≤ Tmax, (30)

where

Tmax = T0
E

4

(

1 + e−cmax
Umin
D

√
1 + cmax

)(

1 + ecmax
Umax
D

√
1 + cmax

)

.

Thus, there exists a (−cmax ≤ c ≤ 0, 0 ≤ λs ≤ 1) tuple that can
achieve any Tc

Edist
value in the range given in (30).

In a similar fashion, one can show that there exists a 0 ≤ c ≤
cmax that can achieve any Tc

E value in the range,

Tmin ≤ Tc
E ≤ T0

E,

where

Tmin = e−cmax
1U
D

1 − cmax

T0
E.

From the above observations, it can be concluded that there exist
−cmax ≤ c ≤ cmax, λt ≤ 1, and 0 ≤ λs ≤ 1 that can achieve any
desired mean switching time in the range Tmin ≤ Td

E < Tmax.
It is worth noting that for the above controller, c < 1was consid-

ered in the analysis. If c > 1, the peak and the trough of the e�ective
potential (1 − c)U will be swapped, and the1U/D � 1 assumption
would not hold anymore.

C. Controller parameter selection in for general

systems

If Td
E lies between the Tmin and Tmax limits speci�ed previously,

there always exists a set of (c, λt , λs) values that will achieve the
desired MST. If the noise intensity D is known, depending on Td

E ,
a suitable set of (c, λt , λs) values can be selected to achieve Td

E . In
general, the noise level D is not known. In such cases, not only is
it impossible to determine a set of (c, λt , λs) values to achieve a given
Td
E but it is also not possible to determine if the required Td

E value is
even feasible. In a general higher-dimensional system, selecting a set
of (c, λt , λs) is even more complicated since an expression for TE of
the form given in (22) is not available.

In the control strategy given in Sec. IV A, the problems outlined
above are overcome by �rst selecting values for c, λt , λs that approx-
imately achieve the desired MST for Td

E > T0
E and then by re�ning
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λt to achieve Td
E when Td

E < T0
E. For the T

d
E > T0

E case, the current
uncontrolledMST T0

E is approximately estimated using (15) and then
a value for c that would make TE → Td

E is selected using c < 0 con-
trol alone. Note that for this TE to be achieved using c < 0 control
alone, λs = 1. Thus, for this case, Tc

Edist
≈ Td

E . According to (28), to

make T
exp
E ≈ Tc

Edist
≈ Td

E , we need λt → −∞. That is, by selecting
a large value for λs and a large negative value for λt , we are able to
approximately achieve Td

E if T
d
E > T0

E. However, if T
d
E < T0

E, this large
negative value for λt will not be able to achieve the required T

d
E . Thus,

in order to achieve the desired MST for both Td
E > T0

E and Td
E < T0

E,
we select 0 � λs < 1 and 0 < λt � 1, i.e., λs close to 1, and λt close
to zero.

V. RESULTS

The control strategy given in Sec. IV A was used to control the
mean switching time to a desired value in two dynamical systems
exhibiting multiple stable equilbria, the double-gyre �ow model and
the damped pendulum model. In all of the following simulations,
the Euler–Maruyama method was used for integrating the stochastic
di�erential equations.

FIG. 9. Desired MSTs T
d

E
vs the actual MSTs T

act

E
for different (λs, λt) value

combinations. The values of λs and λt for each set is given in Table I.

TABLE I. Values of λs and λt used in the simulations.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

λs 0.85 0.85 0.85 0.2 0.2 0.2
λt −1 0.0625 0.9 −1 0.0625 0.9

A. Simulation results for a double-gyre flow

The double-gyre �owmodel is often used to describe large scale
recirculation in the ocean,17 and it is given in (6). Figure 2(a) shows
the phase portrait of the �ow forA = 1, s = 1, andµ = 1. Forµ > 0,
each gyre has a deterministic attractor in the center of the gyre and
is �anked by four saddle points. The gyre boundaries consist of the
stable and unstable manifolds of these saddle points. A system of
two adjoining gyres as shown in Fig. 2(a), qualitatively resembles a
double-well potential.

Using the same parameter values (A = 1, µ = 1 and s = 1),
the stochastic double-gyre was considered in the simulations, with
noise intensities given in the set D = {1/30, 1/40, 1/50, 1/60, 1/70}.
For each noise intensity, a set of desired MSTs given by Td

E = {3,
6, 12, 26, 57, 122, 262} were considered. These Td

E values approxi-
mately correspond to the natural mean switching times T0

E for
noise intensities {1/20, 1/30, 1/40, 1/50, 1/60, 1/70, 1/80}, respec-
tively. For each (D, Td

E) pair, 1000 simulation trials, each starting near
the center of the left gyre, were conducted. Each simulation trial was
terminated when the system state escaped the boundaries of the left
gyre. In all simulations, cmax = 0.5 was considered. In order to inves-
tigate the e�ect of selecting di�erent λs and λt values, simulations
were run for the (λs, λt) value combinations given in Table I. In sets
1–3, a large value is selected for λs (≈ 1), and in sets 4–6, a small value
is selected for λs. In both cases, λt is successively increased from a

FIG. 10. Error E = T
d

E
− T

act

E
vs Td

E
curves for different noise levels in the sys-

tem. The vertical dashed lines represent the uncontrolled MST for each noise
level.
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negative value toward 1. From the discussion in Sec. IV C, the best
results should be expected for set 2, where λs is large and λt is mod-
erate. Figures 9(a)–9(f) show plots of desired MST, Td

E , vs the actual
MST, Tact

E , for di�erent (λs, λt) value combinations. For each set of
(λs, λt) values, multiple noise levels are considered. In each �gure, the
thick dotted line in black represents the ideal Td

E = Tact
E curve. The

closer theTd
E vsT

act
E curves are to this line, the better the performance

of the control strategy.
Figures 9(a)–9(f) show that set 2 (λs = 0.85, λt = 0.0625),

indeed gives the best results. In set 1, Tact
E overshoots Td

E by a consid-
erable margin since the negative value used for λt cannot pull back
Tc
Edist

in (28) enough toward Tc
E. On the other hand, in set 3, where λt

is close to 1, Tc
Edist

is pulled too far back by the c > 0 control, which

results in very small Tact
E values. Set 4 and set 6 follow similar behav-

iors as set 1 and set 3, respectively, due to the e�ect of λt . While sets
2 and 5 consider the same moderate value for λt , in set 5, Tact

E under-
shoots Td

E due to the small value of λs considered in set 5. Note that
even in set 2, which has the best performance, large desired MSTs
cannot be obtained when the noise in the system is high [see red line
in Fig. 9(b)]. In such cases, the available control is not su�cient to
achieve MSTs which are much greater than the “natural” MST of the
system. In these cases, the desired MST falls outside the established
limits.

Figure 10 shows the error E = Td
E − Tact

E , for set 2 in Table I
(λs = 0.85 and λt = 0.0625), which has the best performance among
the parameter values tested. The error is plotted against the desired
MST for a collection of noise levels in the system. The vertical dashed
lines represent the “natural” MSTs for each noise level. It can be seen
that the errors are well contained even when the desired MSTs are
much higher than the “natural” MSTs. For noise level D = 1/30, the
available control is insu�cient to overcome the noise for large Td

E

values.
Figures 11(a)–11(f) show the probability densities of the MSTs

obtained for di�erent values ofTd
E . For these simulations, a noise level

of D = 1/60, which has a “natural” MST of approximately 57 s, was
considered.We used λs = 0.85 and λt = 0.0625 for the control. It can
be seen that the proposed control is able to achieve Td

E values that
are much farther away from the natural MST. From these results, it
can be seen that the control strategy proposed in Sec. IV A is able to
achieve awide range of desiredMSTs, for awide range of systemnoise
levels.

The control strategy was also tested with a non-Gaussian noise
source to check its performance in a nonideal scenario. In this case,
the noise signal was derived as η(t) = σ̃z1/3(t) + δ, where each com-
ponent of z has a standard normal distribution, i.e., zi ∼ N (0, 1).
The value for σ̃ was selected so that the standard deviation of each
component of η was equal to the standard deviations considered in
the Gaussian case, i.e., σ(ηi) =

√
2D for i = 1, 2. As each compo-

nent of the mean δ is the same value δ, this term essentially shifts
the �ow velocities in (1) by a constant amount, and its value is
selected to be small enough such that the gyre structure of the �ow is
maintained. Figure 12 shows the results for the case where δ = 0.1,
λs = 0.85, and λt = 0.0625. In the cases shown, σ̃ was selected such
that the noise signals have the same standard deviations as before. It
can be seen that the desired MSTs are achieved with relatively small
errors, even in the presence of non-Gaussian noise sources. Com-
paring the error curves for the Gaussian and non-Gaussian cases,

FIG. 11. Probability density function of the actual MSTs for various values Td

E
for

a noise level of D = 1/60, where λs = 0.85 and λt = 0.0625 were used for the
control.

it can be seen that the performance is only slightly degraded in the
non-Gaussian case.

B. Simulation results for a damped pendulum

The proposed control method was used to control the MST in a
damped pendulum system given by

θ̈ = − g

L
sin θ − βθ̇ + u, (31)

where θ is the angle measured anticlockwise from the downward
direction, g is the gravitational constant, L is the length of the pen-
dulum, β is the damping coe�cient, and u is the external control
force. Considering the state space representation of this system, the
noise-a�ected system can be expressed in the form of (8), where

F(x) =
[

ω

− g

L
sin θ − βω

]

, (32)

with state x = [θ ,ω]T , control u = [0, u]T , and noise η = [0, η]T .
Note that 1D control and noise �elds are considered since the original
system only has a 1D control.
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FIG. 12. Simulation results for non-Gaussian noise, where η(t) = σ̃ z1/3(t) + δ

with δ = 0.1, λs = 0.85, and λt = 0.0625, and where σ̃ was selected such that
σ(ηi) =

√
2D for i = 1, 2. (a) Td

E
vs Tact

E
curves for different noise levels and (b)

error E = T
d

E
− T

act

E
vs Td

E
curves for different noise levels.

A damped pendulum with parameters L = 1 and β = 0.1253
was considered in the simulations (see Fig. 13). Noise intensi-
ties in the set D = {1/3, 1/2, 1} were used in the simulations, and
for each noise intensity, a set of desired MSTs given by Td

E =
{1778, 254, 45, 25} were considered. These Td

E values approximately
correspond to the natural mean switching times T0

E for noise levels
{1/3, 1/2, 1, 1.5}, respectively. For each (D, Td

E) pair, 1000 trials were
simulated until escape through the basin boundary (the basin bound-
ary is shown by the black line in Fig. 13). As proposed in Sec. IV C,
a large value was selected for λs and a small value was selected for
λt . Figure 14 shows the desired MST Td

E vs the actual MST Tact
E for

FIG. 13. Phase portrait for the damped pendulum system given in (31) for L = 1
and β = 0.1253. The deterministically stable equilibrium is shown by the black
cross, and the two saddle points are shown by red crosses.

di�erent noise intensities with λs = 0.9 and λt = 0.01. It can be seen
that the proposed external control is able to achieve MSTs that are
much di�erent to the natural uncontrolled switching time of the sys-
tem. Figure 15 shows the error E = Td

E − Tact
E , for parameter values

λs = 0.9 and λt = 0.01. Similar to the double-gyre system, the errors
are well contained even when the desired MSTs are much di�erent
from the “natural” MSTs.

FIG. 14. Desired MSTs Td

E
vs the actual MSTs Tact

E
for different noise intensities

with λs = 0.9 and λt = 0.01 for the damped pendulum. The colored horizontal
dashed lines indicate the “natural” uncontrolled MST for each noise level.
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FIG. 15. Error E = T
d

E
− T

act

E
vs Td

E
curves for different noise levels in the sys-

tem. The vertical dashed lines represent the uncontrolled MST for each noise
level.

VI. CONCLUSIONS

In this work, a control strategy that could be used to control
the mean switching time (MST) in a multistable dynamical system
a�ected by external noise was presented. The main idea was to use
an external control signal to obtain a desired MST. It was shown that
the control strategy could be used to enhance or abate the MST by
changing the action of the noise required to a�ect a transition. A spe-
ci�c controller, inspired by the most probable noise pro�le leading to
transition, was proposed to control the MST to a desired value. The
controller was analyzed in a 1D system, and it was shown that the
controller can achieve any MST in a bounded interval whose limits
are governed by the amount of control actuation available. The strat-
egy was evaluated in simulations using two dynamical systems, the
double-gyre �ow and the damped pendulum. The results show that
the controller is indeed able to obtain desired MSTs for various noise
levels in the system including non-Gaussian noise.
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