
Chaos 31, 111101 (2021); https://doi.org/10.1063/5.0065617 31, 111101

© 2021 Author(s).

Knowledge-based learning of nonlinear
dynamics and chaos
Cite as: Chaos 31, 111101 (2021); https://doi.org/10.1063/5.0065617
Submitted: 03 August 2021 • Accepted: 20 October 2021 • Published Online: 09 November 2021

 Tom Z. Jiahao, M. Ani Hsieh and Eric Forgoston

https://images.scitation.org/redirect.spark?MID=176720&plid=1518041&setID=405123&channelID=0&CID=554244&banID=520431750&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3eb061b2135dae696921817a93aa61b893686d38&location=
https://doi.org/10.1063/5.0065617
https://doi.org/10.1063/5.0065617
http://orcid.org/0000-0001-6645-6068
https://aip.scitation.org/author/Jiahao%2C+Tom+Z
http://orcid.org/0000-0003-2186-9074
https://aip.scitation.org/author/Hsieh%2C+M+Ani
http://orcid.org/0000-0003-0694-9981
https://aip.scitation.org/author/Forgoston%2C+Eric
https://doi.org/10.1063/5.0065617
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0065617
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0065617&domain=aip.scitation.org&date_stamp=2021-11-09

Chaos ARTICLE scitation.org/journal/cha

Knowledge-based learning of nonlinear dynamics
and chaos

Cite as: Chaos 31, 111101 (2021); doi: 10.1063/5.0065617

Submitted: 3 August 2021 · Accepted: 20 October 2021 ·
Published Online: 9 November 2021 View Online Export Citation CrossMark

Tom Z. Jiahao,1,a) M. Ani Hsieh,2 and Eric Forgoston3

AFFILIATIONS

1Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
2Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,

Pennsylvania 19104, USA
3Department of Applied Mathematics and Statistics, Montclair State University, Montclair, New Jersey 07043, USA

a)Author to whom correspondence should be addressed: zjh@seas.upenn.edu

ABSTRACT

Extracting predictive models from nonlinear systems is a central task in scientific machine learning. One key problem is the reconciliation
between modern data-driven approaches and first principles. Despite rapid advances in machine learning techniques, embedding domain
knowledge into data-driven models remains a challenge. In this work, we present a universal learning framework for extracting predictive
models from nonlinear systems based on observations. Our framework can readily incorporate first principle knowledge because it naturally
models nonlinear systems as continuous-time systems. This both improves the extracted models’ extrapolation power and reduces the amount
of data needed for training. In addition, our framework has the advantages of robustness to observational noise and applicability to irregularly
sampled data. We demonstrate the effectiveness of our scheme by learning predictive models for a wide variety of systems including a stiff Van
der Pol oscillator, the Lorenz system, and the Kuramoto–Sivashinsky equation. For the Lorenz system, different types of domain knowledge
are incorporated to demonstrate the strength of knowledge embedding in data-driven system identification.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065617

We consider the general problem of data-driven modeling of
dynamical systems from past observations. We seek to address
two important questions: (i) how to use machine learning to
model general classes of dynamical systems, especially those
with nonlinear and chaotic dynamics, and (ii) how to recon-
cile data-driven models and first principles knowledge. We pro-
pose Knowledge-Based Neural Ordinary Differential Equations
(K-NODE), which, unlike other machine learning techniques, is
marked by its flexibility for first principles knowledge incorpo-
ration and applicability to a wide variety of dynamical systems.
Furthermore, our framework is robust to observational noise and
irregularly sampled data. Given the abundance of simulated and
real data available to scientists and engineers, our framework can
be used to extract meaningful correlations and identify system
relationships. The proposed framework enables the acquisition
of new physical insights and improves the understanding of a
wide variety of complex nonlinear systems in diverse scientific
disciplines.

I. INTRODUCTION

Recent advances in machine learning and data analytics have
largely been fueled by the vast amount of data and have resulted in
significant advances in various scientific disciplines.1,2 Deep learn-
ing tools such as recurrent and convolutional neural networks
have enabled the identification of coherent data patterns commonly
imperceptible to humans. However, most of these data-driven tech-
niques perform poorly when they are trained with insufficient data
or used to extrapolate beyond the sampled data. These deficiencies
are largely due to the inability to incorporate first principles domain
knowledge. By combining first principles with deep learning models,
knowledge-based learning can potentially address these challenges
by leveraging the extrapolation power of first principles knowledge.
However, most existing deep learning models are incompatible with
this knowledge.

Since the emergence of calculus, differential equations have
been successfully used to model real world phenomena from plan-
etary motions, fluid processes, to biological systems. Differential

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-1

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0065617
https://doi.org/10.1063/5.0065617
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0065617
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0065617&domain=pdf&date_stamp=2021-11-09
http://orcid.org/0000-0001-6645-6068
http://orcid.org/0000-0003-2186-9074
http://orcid.org/0000-0003-0694-9981
mailto:zjh@seas.upenn.edu
https://doi.org/10.1063/5.0065617

Chaos ARTICLE scitation.org/journal/cha

equations are compact representations of vector fields on which the
evolution of dynamical systems can be realized. Fundamental to
the idea of differential equations is the assumption that time and
space are continuous. Our vast pool of interpretable first principles
knowledge are built upon these underlying assumptions. In contrast,
many data-driven approaches for modeling dynamics do not assume
continuity for systems and are fundamentally discrete in nature.

One of the earliest data-driven approaches to model dynam-
ical systems builds on Takens’ embedding theorem and repre-
sents systems as time delay models by embedding the original
system’s states into delayed snapshots.3–5 In comparison, mod-
ern machine learning strategies employ recurrent neural networks
(RNNs) which have memory properties as a result of feedback loops.
Both long–short-term memory (LSTM)6 and reservoir computers
(RCs)7 are examples of RNNs that have been employed to predict
two-dimensional fluid flows8 and to describe the chaotic dynam-
ics of a one-dimensional Kuramoto–Sivashinsky model.9 However,
both time delay models and RNN-based approaches only output
the solutions of dynamical systems at prescribed time intervals.
Although the solutions may appear continuous, the continuity of the
original system is inevitably lost. In fact, this lack of model continu-
ity is one of the reasons for the incompatibility between knowledge
and data-driven models. There have been attempts to combine
knowledge with reservoir computers9 for modeling spatiotemporally
chaotic systems. Although this hybrid approach showed improved
performance, only the solutions of a first principle model were
incorporated instead of the model itself. Consequently, the reservoir
computer and knowledge are still disjoint.

Most recently, there has been an increased focus in develop-
ing strategies that explicitly extract differential equations of a system
to represent its dynamics. One method uses sparse regression to
determine the combination of basis functions that best describes the
vector field from observations10,11 and, therefore, is able to extract
interpretable mathematical models. Nevertheless, a fundamental
challenge with this method is the need for a predetermined library
of basis functions. If the correct terms are missing from the library,
the resulting models may be inadequate at describing the system
dynamics. In addition, sparse regression does not scale with high-
dimensional systems as the library of functions would become very
large.

Chen et al. introduced a new family of neural networks,
commonly referred to as neural ordinary differential equations
(NODE).12 NODE and its variants13–16 combine the power of mod-
ern machine learning with the formalism of differential equations
and are fundamentally continuous.12 Separately, a scientific machine
learning library was built using NODE to incorporate physical
constraints into data-driven models. This framework has demon-
strated how to incorporate a wide range of knowledge into scien-
tific machine learning.17 Nonetheless, existing NODE formulations
assume stable dynamics for the systems they model in order to
achieve convergence.18 As a result, these and other NODE variants
have yet to generalize to systems with unstable or temporally chaotic
dynamics.

In this paper, we introduce K-NODE, a novel universal frame-
work for modeling system dynamics from observations. Our pro-
posed framework is universal in that it generalizes the learning
task to any continuous-time dynamical system including those with

unstable and chaotic behaviors. It is also robust to noisy and irregu-
larly sampled data and can scale to high-dimensional systems. Most
importantly, our framework can readily incorporate first principles
domain knowledge into neural networks, significantly improving
their extrapolation ability. We redefine the system identification task
as a constrained optimization problem, which converges regardless
of the stability of systems. Similar to NODE, the optimization prob-
lem can be efficiently solved using the adjoint sensitivity method,19

which allows for constant-memory gradient propagation regardless
of the number of interpolation steps between the observation time
intervals.

We will first demonstrate the effectiveness of our framework
by modeling a variety of nonlinear systems using only neural net-
works. Then, we will show how different forms of knowledge can
be incorporated to significantly reduce the amount of data needed
for training and to improve the extrapolation power of the models
beyond the sampled data.

II. KNOWLEDGE-BASED NEURAL ODES (K-NODE)

We are given m observations of the trajectory generated by a
dynamical system sampled at T = {t1, t2, . . . , tm}, ti ∈ R,

Z =

(z)> (t1)

(z)> (t2)

...

(z)> (tm)

=

z1 (t1) z2 (t1) · · · zn (t1)

z1 (t2) z2 (t2) · · · zn (t2)

...
...

. . .
...

z1 (tm) z2 (tm) · · · zn (tm)

,

where Z ∈ R
m×n is the matrix containing the observations, and the

vector z(ti) ∈ R
n is the observation of the state at ti. Assume the true

model of this dynamical system is given by

ẋ = f (x, t) ,

where x(t) ∈ R
n is the n-dimensional state vector at time t. Let

f̃ denote the model based on our current understanding of the

system. Then, f̃ is given by

ẋ = f̃(x, t). (1)

We say f̃ is the knowledge we have about the system. This
knowledge may be perfect, partially known, and/or partially correct,
i.e., imperfect—either lacking the correct nonlinear terms or not
having the correct steady state behavior of the true model. Given this

knowledge f̃, our goal is to approximate the function f with a hybrid

model f̂(x, t, f̃(x, t), θ), which incorporates the knowledge f̃, and is

parameterized with the vector θ . In this work, we represent f̂ using a

combination of artificial neural networks and the knowledge f̃.

While it is flexible how f̃ gets incorporated into f̂, in this work

we consider linearly coupling the outputs from f̃ and the neural net-
work using a matrix Mout ∈ R

p×n with output biases. Both Mout and
the biases are co-trained with the neural network. Given the input
size p, Mout and the biases are initialized uniformly random from

[−1/
√

p, 1/
√

p]. The hybrid architecture of f̂ is illustrated in Fig. 1.
Note that our approach to knowledge incorporation differs funda-
mentally from those of hybrid reservoir computers.9 While hybrid
reservoir computers first perform numerical integration for both

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-2

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 1. A hybrid architecture incorporating an imperfect vector field f̃ into the

model f̂ . Outputs from the neural network and the knowledge block f̃ are then
linearly coupled.

the knowledge and its reservoirs separately and then linearly cou-
ple their respective solutions, K-NODE first linearly couples the
vector fields and then performs numerical integration. K-NODE is
able to directly couple the vector field owing to its explicit nature in
modeling differential equations.

We then pose this system identification task as the following
constrained optimization problem:

min
θ

L(θ)

s.t. ẋ = f̂(x, t, f̃(x, t), θ),

x(ts, z(ts)) = z(ts), ts ∈ T,

(2)

where the first constraint is the differential equation defined by the

hybrid model f̂, the second constraint specifies the initial conditions,
and the parameters θ can then be estimated by θ = argmin

θ
L(θ).

For the objective function in (2), we define an L2 loss function

between the observed trajectory and the trajectory generated by f̂
given by

L(θ) = 1

m − α

m−α
∑

i=1

1

α

∫ ti+α

ti

δ(ts − τ)‖x(τ , z(ti)) − z(τ)‖2 dτ , (3)

where ts ∈ T is any sampling time point, and δ is the Dirac delta
function. In general, for any given initial condition, a trajectory can

be generated from f̂ using a suitable numerical integration scheme.
Thus, x(τ , z(ti)) in L(θ) is defined as the state at time τ generated by

f̂ with the initial condition x(ti, z(ti)) = z(ti) at time ti given by

x(τ , z(ti)) = z(ti) +
∫ τ

ti

f̂
(

x (ω, z(ti)) , ω, f̃(x, ω), θ
)

dω. (4)

Note that the state at tj+1 generated by f̂ with the initial condition

z(tj) is called a one-step-ahead diffeomorphic flow associated with f̂.
In our loss function given by (3), the integral from ti to ti+α requires

an α-step-ahead diffeomorphism associated with f̂, and we call α

the lookahead. While some existing work assumes α = 1,10,20,21 we
have found that using a larger lookahead can sometimes yield better
results. Hence, we treat α as a hyperparameter to be tuned. This con-
strained optimization formulation is illustrated with a 1D example
in Fig. 2. Formulation similar to (2) has been used to learn chaotic
systems using models, which heavily incorporates the physics but
the optimization task is not explicitly stated.22 In the original NODE
formulation, the loss is defined over the entire trajectory predicted

FIG. 2. A 1D example of the constrained optimization problem. The blue curve is
the observation, and the red curves are the trajectories generated by the neural

network f̂ . In this example, α = 2 and, therefore, the neural network generates
a trajectory of length 2 beginning with the sampled state at every time step. The
loss is then computed between the blue and red curves at every sampled time
steps.

using a neural network. We note that this formulation is one of
the main contributors for the numerical instability when learning
chaotic systems since chaotic trajectories are deemed to diverge
exponentially fast in time. While there is no theoretical guarantee for
convergence using our optimization formulation in (2), our empir-
ical results have shown that our formulation is capable of achieving
convergence for systems with chaotic or unstable dynamics.

While the optimization problem in (2) can be solved using
the conventional backpropagation, the adjoint sensitivity method
is a memory efficient alternative that is used in our work. The
method description and its derivation are included in S2 in the

supplementary material. In this work, the neural network f̂ is imple-
mented using the PyTorch nn module, and the Adam optimizer is
used to update the neural network parameters. Last, the adjoint sen-
sitivity method is implemented as a custom autograd function for
gradient propagation.23

The ability to incorporate knowledge should require less train-
ing data for the learning framework to capture the true dynamics of
the system of interest. And most importantly, the resulting hybrid
model will be able to extrapolate beyond the sampled data, as we
will demonstrate in our results.

III. RESULTS

Using our universal learning framework, we consider differ-
ent dynamical systems of varying complexities. For each system,
training data are simulated with a suitable integration scheme. The
simulation and training parameters are summarized in S3 in the
supplementary material. Note that the training solver and its param-
eters must be chosen in a way such that it can realize the system’s
trajectories. Generally, solver selection should be based on criteria
including system dynamics, solution stability, computation effi-
ciency, and solver robustness.24 For instance, Euler’s method with

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://www.scitation.org/doi/suppl/10.1063/5.0065617
https://www.scitation.org/doi/suppl/10.1063/5.0065617

Chaos ARTICLE scitation.org/journal/cha

a large step size may not suffice for stiff systems such as the Van
der Pol oscillator as it will result in numerical instability. The pro-
posed framework is evaluated with respect to its ability to reproduce
the dynamics of the actual system and to extrapolate or predict
future observations. We also validate the framework for learning the
dynamics of systems without prior knowledge and with limited prior
knowledge.

To help better visualize the evolution of system states, we plot
the trajectories of the Hopf normal form and the chaotic Lorenz sys-
tem in gradient color, where their trajectories start in blue (RGBA:
[0.0, 0.0, 0.5, 1.0]) and end in yellow (RGBA: [0.9, 1.0, 0.0, 1.0]).

A. Learning without knowledge

In this subsection, we demonstrate learning without assuming
any knowledge about the system, i.e., only a neural network is used

to model the systems and f̃ = 0.
Van der Pol oscillator. We first demonstrate our framework

in learning the dynamics of a stiff system. Consider the Van der Pol
oscillator, which is a non-conservative oscillator with a limit cycle
behavior25 and has important applications in the modeling of peri-
odic biological systems. The oscillator’s second-order differential
form is26

d2x

dt2
= µ(1 − x2)

dx

dt
− x, (5)

but it is often written in its first-order form as the system of
equations

ẋ = y,

ẏ = −x + µ(y − x2y).
(6)

This system is known for its increasing stiffness as µ is
increased. Here, we consider the stiff Van der Pol oscillator with
µ = 10. The training data are a trajectory of 1000 points simulated
with the initial condition [x0, y0]

> = [2, 0]>. The trained model cor-
rectly captures the stiffness and limit cycle behavior of the Van der
Pol oscillator as shown in Fig. 3.

Hopf normal form. A bifurcation occurs when a dynamical
system undergoes a sudden change in behavior when its parameters
are varied. We consider a canonical model for a Hopf bifurcation,
the Hopf normal form, which is given as

ẋ = µx + y − x(x2 + y2),

ẏ = −x + µy − y(x2 + y2),
(7)

where µ is the system parameter which, when varied, gives rise to a
Hopf bifurcation. We incorporate the parameter µ into our model
as a third dimension to the input vector, and set its time derivative
to 0, i.e., µ̇ = 0. Training data, as shown in Fig. 4(a), are simu-
lated with three parameter values µ = {−0.1, 0.35, 0.8}. The trained
model correctly captures the bifurcation as shown in Fig. 4(b).
The trained model can accurately interpolate between µ = −0.1 to
µ = 0.8, and extrapolate from µ = −0.2 to µ = 1.0, which is
beyond the range of µ in the training data. This demonstrates the
generalization power of the trained model over system parameters.

Chaotic Lorenz system. Next, we consider the chaotic Lorenz
system27

ẋ = 10(y − x), ẏ = x(28 − z) − y,

ż = xy − (8/3)z.
(8)

We simulate training data with the initial condition [x(0), y(0),
z(0)]> = [−8, 7, 27]>. As shown in Fig. 5, the trained model is able
to capture the bistable structure of the Lorenz attractor both within
and beyond the duration of the training data.

To determine whether the resulting model is truly chaotic, we
adopt the 0-1 test proposed by Gottwald and Melbourne,28 which
directly applies to time series data. The 0-1 test is binary, i.e., under
ideal conditions, it outputs 1 if the system is chaotic and 0 otherwise.
In practice, the outputs are approximately 1 and 0 for chaotic and
non-chaotic systems. Details about the 0-1 test are included in S1 in
the supplementary material.

FIG. 3. Prediction of the stiff Van der Pol oscillator with µ = 10. (a) Simulated trajectory (red) vs the model predicted trajectory (dotted black). (b) True trajectory and
(c) predicted trajectory of x as a function of time for the Van der Pol oscillator.

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-4

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://www.scitation.org/doi/suppl/10.1063/5.0065617

Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Learning the Hopf normal form. (a) Training data. (b) The trained model interpolates between µ = −0.2 and µ = 1.0.

Performing the 0-1 test on the predicted trajectory gives
Kc = 1.079, showing that the identified system has chaotic
dynamics.

Kuramoto–Sivashinsky equation. Moreover, our framework
can learn the dynamics of spatiotemporally chaotic PDEs. Con-
sider the one-dimensional Kuramoto–Sivashinsky equation (KS)
with periodic boundary conditions y = y(x, t) and y(x + L, t)
= y(x, t),29,30

∂y

∂t
= −y

∂y

∂x
− ∂2y

∂2x
− ∂4y

∂4x
. (9)

We consider a 64-grid KS equation with L = 60. The most pos-
itive Lyapunov exponent is 3max = 0.089, and the Kaplan–Yorke
dimension of the attractor is DKY = 13.56.31 We use a natural time
scale, the Lyapunov time 3maxt, for model evaluation. Since this sys-
tem is spatially high-dimensional, we first use convolutional layers
in our neural network for dimensionality reduction and then a lin-
ear coupling matrix to restore the spatial dimension of the output.
To generate training data, we discard the first 1000 steps of tran-
sient data and simulate a total of 8000 steps. Training data are then

taken to be the first 5000 steps, which equates to 111.25 Lyapunov
time. Testing data are taken from the 6000th to the 8000th steps of
the simulated data. Figure 6 shows that the trained neural network
can capture the first 4 Lyapunov times with high accuracy before the
trajectories diverge. Even after the trajectories diverge, the system
behaves similarly to the actual system.

To qualitatively evaluate the performance of the trained model,
we adopt the dimensionality reduction technique, proper orthog-
onal decomposition (POD),32 which maps the energy of a given
system. The term energy is analogous to data variance in a principal
component analysis.33 Figure 7 shows the scatterplot of the energy
for each of the 64 dimensions in the testing data and the predictions
made by the neural network. It can be observed that the prediction
has a similar energy signature as the testing data.

B. Knowledge-based learning

In this subsection, we consider learning with imperfect knowl-
edge about a system. First, assume the true system is the Lorenz
system from (8). However, we only have the knowledge of a Lorenz

FIG. 5. Learning the chaotic Lorenz system with a neural network without knowledge. (a) Training data (t = 0 to t = 20). (b) Model prediction (t = 0 to t = 20). (c) Model
extrapolation (t = 20 to t = 40).

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 6. Trained KS model prediction on the testing data.
(a) Testing data. (b) Prediction with the trained model using
the first step of test data as the initial condition. (c) Difference
between the test data and prediction.

system with incorrect coefficients. The incorrect system keeps ẋ
and ż the same but has ẏ = x(−4.8 − z) + 7.2y. This incorrect sys-

tem is, therefore, our knowledge f̃. Figure 8(b) shows the trajectory
of this incorrect system, which has periodic rather than chaotic
behavior. We combine this incorrect system with a neural net-
work according to the hybrid scheme shown in Fig. 1. The training
data, shown in Fig. 8(a), are generated with the initial condition
[x(0), y(0), z(0)]> = [−8, 7, 27]>. Note that this training data have
only 2/5 the length used for training without knowledge. Figure 8(c)
shows that the trained model restores the bistable structure and
chaotic dynamics. Performing the 0-1 test on the knowledge gives
Kc = 0.036, and the predicted trajectory gives Kc = 1.11, showing

FIG. 7. Comparing the POD decomposition for testing data and predictions. The
scatterplots show the energy of the spatial modes from the POD decomposition
of (a) the testing data and (b) the predictions on the testing data.

that the trained model has chaotic dynamics, even though the
knowledge was not chaotic.

Next, we consider incorporating the knowledge generated by
SINDy, a system identification method that uses sparse regression
on a library of basis functions.10 When the correct nonlinear terms
are missing from the library, SINDy may fail to capture the actual
dynamics. Here, we present an example of learning the chaotic
Lorenz system using an imperfectly identified model from SINDy.
We simulate observations for the chaotic Lorenz system using RK4
with a step size of 0.01 from t = 0 to t = 80 and sample training data
with a step size of 0.02. We then perform SINDy on these data using
a library of polynomials up to the fourth order. SINDy identifies
the system shown in Fig. 9(a), which correctly captures the bistable
structure of the chaotic Lorenz system. However, if the nonlinear-
ities xz and xy are excluded from the library of functions, SINDy
identifies a system shown in Fig. 9(c), which is not chaotic as the
trajectory eventually forms a Fig. 8 shaped limit cycle. If x, xz, and
xy are excluded, the identified system, as shown in Fig. 9(b), fails
completely to capture the bistable structure.

The incorrectly identified system in Fig. 9(c) has the form

ẋ = −9.913x + 9.913y,

ẏ = −7.175x + 20.507y − 0.613yz,

ż = −3.05z + 0.504x2 + 0.479y2,

(10)

which we will use as the knowledge f̃. Since the terms xy and xz are
excluded from the regression library, both ẏ and ż have incorrect
nonlinearities. By incorporating this incorrectly identified model
according to the hybrid scheme, the trained model can correctly
restore the bistable structure as shown in Fig. 9(d) by only using
training data from t = 0 to t = 8. Note again that the training
data are only 2/5 the length used for training without knowledge.
Performing the 0-1 test on the knowledge gives Kc = 0.064, and
the predicted trajectory gives Kc = 0.832, showing that the trained
model has chaotic dynamics.

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-6

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 8. Learning the Lorenz system with knowledge. (a) Training data (t = 0 to t = 8). (b) Trajectory (t = 0 to t = 20) of the incorrect Lorenz system. (c) Extrapolation
(t = 8 to t = 28) using a trained model with the incorrect system as knowledge.

We trained on the same amount of data (t = 0 to t = 8) without
incorporating any knowledge. The neural network tends to over-
fit and “memorize” the data. When further extrapolating in time,
the trained model tends to either a limit cycle or fixed point and is
unable to reproduce the chaotic dynamics.

Next, we show that knowledge incorporation gives the result-
ing model better extrapolation power beyond the sampled data.

Here, we compare the three trained models by using them to pro-

duce trajectories at initial conditions different from [−8, 7, 27]>,

which is used for generating training data. Figure 10 shows the

predicted trajectories using the initial conditions [−8, 7, 12]>, and
[10, −5, 27]>. While the chaotic behavior is completely lost in the
neural network trained without any knowledge incorporation, both
knowledge-based neural networks can still reproduce the bistable
structure. Performing the 0-1 test on both knowledge-based models
shows that they are chaotic.

C. Learning from noisy observations

Last, we demonstrate our framework’s robustness to obser-
vational noise. Considering the Lorenz system, we use the same
training data as training without knowledge but now include Gaus-
sian noise with zero mean and 0.1 variance (∼N(0, 0.1)). This
noisy trajectory is shown in Fig. 11(a). The trained neural network
correctly captures the chaotic dynamics as shown in Figs. 11(b)
and 11(c). Performing the 0-1 test on the predicted trajectory gives
Kc = 1.10.

We also consider noisy observations from the KS equation.
Using the same training data as learning without knowledge,
we include Gaussian noise with zero mean and 0.01 variance
(∼N(0, 0.01)). Figure 12 shows the learning result. Though the
trained model can only accurately predict about 1 Lyapunov time
before the trajectories diverge, this demonstrates the effect of noise
on the chaotic dynamics, i.e., a slight perturbation in the initial

FIG. 9. Systems identified by SINDy using a library of polynomial functions up to the fourth order after excluding different nonlinearities from the function library.
Each plot shows a trajectory for t = 0 to t = 20. (a) System identified if all terms are included in the library. (b) System identified if x, xy, and xz are excluded
from the library. (c) System identified if xy and xz are excluded from the library. (d) Extrapolation (t = 8 to t = 28) using a trained model with the model in (c) as
knowledge.

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-7

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 10. Model predictions from different initial conditions (t = 0 to t = 12). Trajectories are generated from the initial condition (a) [−8, 7, 12]> and (b) [10,−5, 27]> using
the (i) true Lorenz system, (ii) the neural network without knowledge, (iii) the neural network combined with incorrect Lorenz system, and (iv) the neural network combined
with an incorrectly identified model from SINDy.

condition as a result of noise makes the trajectories diverge expo-
nentially fast. However, it can be seen that the predicted trajectories

behave similarly to the true system.

We note that the same neural network architecture converges
much faster when trained on noisy observations. This is consistent

with recent work that adds noise to observations of chaotic systems

to stabilize the training process.9

IV. DISCUSSION

We have demonstrated the universality of our framework by
learning a wide variety of systems including stiff, bifurcating, and
chaotic systems. We have also shown that with spatial convolution,
our framework can easily scale and model high-dimensional sys-
tems. Note that since our framework does not require fixed time
intervals for the training data, it can also learn from irregularly

FIG. 11. Learning the Lorenz system from noisy observations. (a) Training data (t = 0 to t = 20) with observational noise∼N(0, 0.1). (b) Model prediction (t = 0 to t = 20).
(c) Model extrapolation (t = 20 to t = 40).

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-8

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 12. Learning from noisy observations of KS equation.
(a) Testing data with ∼N(0, 0.01) Gaussian noise. (b) Predic-
tion with the trained model using the first step of test data as the
initial condition. (c) Difference between test data and prediction.

sampled trajectories (see in S6 in the supplementary material). Most
importantly, K-NODE is able to recover the dynamics of imperfect
models by using them as knowledge. This demonstrates neural net-
works’ capability to make up for the incorrect nonlinearities in the
governing equations of systems.

In this framework, the neural network is trained with respect to
a numerical solver, which can be different from the simulation solver
used to generate the training data as demonstrated in learning the KS
model. This means that we have the freedom to choose the training
solver and its parameters depending on our needs. For example, we
can use lower order solvers to speed up training at the expense of
model accuracy, and we can perform finer temporal interpolations
by using a smaller step size for the training solver at the expense
of training speed. This is an important feature that ensures excel-
lent accuracy without sacrificing computational speed. Moreover,
it ensures that our framework can be applied not only in the case
when one has high-fidelity simulation data but also when one is
working with real data, which may be noisy or have missing/sparse
data.

For future work, we seek to explore more hybrid-learning
approaches by incorporating different types of knowledge. More-
over, besides using spatial convolutions for dimension reduction,
we will investigate parallel learning using our framework to achieve
even better scalability for very high-dimensional systems. Further-
more, in the hybrid-learning scheme, we have full knowledge about
the trained linear coupling matrix Mout, which dictates how knowl-
edge is combined with neural networks. This matrix Mout could
potentially inform us of the correctness of assumptions made as
well as help us to understand the role of neural networks in the
learned dynamics. In the future, we hope to leverage this to extract
additional physical insight into a wide range of dynamical systems.
Given the amount of model and real data available to us, and con-
sidering the complexity of these systems, our universal learning
framework can be used to understand meaningful correlations and
establish new relationships between processes, thereby enhancing
our knowledge.

SUPPLEMENTARY MATERIAL

See the supplementary material for simulation and training
details, tips for choosing the lookahead, additional experimental
results on learning from noisy or irregularly sampled data, deriva-
tions of the adjoint sensitivity method, and details of the 0-1 test for
chaos.

ACKNOWLEDGMENTS

This work was funded by the Office of Naval Research (ONR)
(Award No. 14-19-1-2253).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts of interest.

DATA AVAILABILITY

The data that support the findings of this study are openly avail-
able in TomJZ/K-NODE at github.com/TomJZ/K-NODE, Ref. 34.

REFERENCES
1M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science 349, 255–260 (2015).
2V. Marx, “The big challenges of big data,” Nature 498, 255–260 (2013).
3F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems
and Turbulence, edited by D. A. Rand and L. S. Young (Springer-Verlag, New
York, 1980), pp. 366–381.
4J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens, and R. Pin-
telon, “Identification of nonlinear systems using polynomial nonlinear state space
models,” Automatica 46, 647–656 (2010).
5E. A. Wan, “Time series prediction by using a connectionist network with
internal delay lines,” Time Series Prediction (Addison-Wesley, 1994), pp. 195–217.
6S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.
9, 1735–1780 (1997).

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://www.scitation.org/doi/suppl/10.1063/5.0065617
https://www.scitation.org/doi/suppl/10.1063/5.0065617
https://github.com/TomJZ/K-NODE
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/498255a
https://doi.org/10.1016/j.automatica.2010.01.001
https://doi.org/10.1162/neco.1997.9.8.1735

Chaos ARTICLE scitation.org/journal/cha

7H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural
networks-with an erratum note,” GMD Technical Report 148, German National
Research Center for Information Technology, Bonn, Germany, 2001.
8M. Qraitem, D. Kularatne, E. Forgoston, and M. A. Hsieh, “Bridging the gap:
Machine learning to resolve improperly modeled dynamics,” Physica D 414,
132736 (2020).
9A. Wikner, J. Pathak, B. Hunt, M. Girvan, T. Arcomano, I. Szunyogh, A.
Pomerance, and E. Ott, “Combining machine learning with knowledge-based
modeling for scalable forecasting and subgrid-scale closure of large, complex,
spatiotemporal systems,” Chaos 30, 053111 (2020).
10S. Brunton, J. Proctor, and J. Kutz, “Discovering governing equations from
data: Sparse identification of nonlinear dynamical systems,” Proc. Natl. Acad. Sci.
U.S.A. 113, 3932–3937 (2015).
11A. A. AlMomani, J. Sun, and E. Bollt, “How entropic regression beats the
outliers problem in nonlinear system identification,” Chaos 30, 013107 (2020).
12T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary
differential equations,” in Advances in Neural Information Processing Systems,
edited by S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (Curran Associates, Inc., 2018), pp. 6572–6583.
13X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. Duvenaud, “Scalable gradients for
stochastic differential equations,” in International Conference on Artificial Intelli-
gence and Statistics, Proceedings of Machine Learning Research Vol. 108, edited
by S. Chiappa and R. Calandra (PMLR, 2020), pp. 3870–3882.
14C. Zang and F. Wang, “Neural dynamics on complex networks,” abs/1908.06491
(2019).
15I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P. Gallinari, “Learning dynami-
cal systems from partial observations,” CoRR abs/1902.11136 (2019).
16E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural odes,” in Advances
in Neural Information Processing Systems (Curran Associates, Inc., 2019), Vol. 32,
pp. 3140–3150.
17C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skin-
ner, A. Ramadhan, and A. Edelman, “Universal differential equations for scientific
machine learning,” arXiv:2001.04385 (2020).
18I. M. Ross, A Primer on Pontryagin’s Principle in Optimal Control (Collegiate
Publishers, San Francisco, 2009).

19Y. Cao, S. Li, L. Petzold, and R. Serban, “Adjoint sensitivity analysis for
differential-algebraic equations: The adjoint DAE system and its numerical solu-
tion,” SIAM J. Sci. Comput. 24, 1076–1089 (2003).
20M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Multistep neural networks
for data-driven discovery of nonlinear dynamical systems,” arXiv:1801.01236
[math.DS] (2018).
21S. Ouala, D. Nguyen, L. Drumetz, B. Chapron, A. Pascual, F. Collard, L.
Gaultier, and R. Fablet, “Learning latent dynamics for partially-observed chaotic
systems,” arXiv:1907.02452 [stat.ML] (2019).
22M. Gelbrecht, N. Boers, and J. Kurths, “Neural partial differential equations for
chaotic systems,” New J. Phys. 23, 043005 (2021).
23M. Surtsukov, “Neural-ODE,” https://github.com/msurtsukov/neural-ode
(2019).
24MathWorks, “Choose a solver—Matlab & Simulink,” Web (2021).
25R. H. Enns and G. McGuire, “Limit cycles,” in Nonlinear Physics with Maple for
Scientists and Engineers (Birkhäuser, Boston, MA, 1997), pp. 183–208.
26B. van der Pol Jun and D. Sc, “LXXXVIII on “relaxation-oscillations,” London
Edinburgh Dublin Philos. Mag. J. Sci. 2, 978–992 (1926).
27E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141
(1963).
28G. Gottwald and I. Melbourne, “A new test for chaos in deterministic systems,”
Proc. R. Soc. London, Ser. A 460, 603–611 (2004).
29Y. Kuramoto, “Diffusion-induced chaos in reaction systems,” Prog. Theor.
Phys. Suppl. 64, 346–367 (1978).
30G. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar
flames—I. Derivation of basic equations,” Acta Astronaut. 4, 1177–1206 (1977).
31R. A. Edson, J. E. Bunder, T. W. Mattner, and A. J. Roberts, “Lya-
punov exponents of the Kuramoto–Sivashinsky PDE,” ANZIAM J. 61, 270–285
(2019).
32P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures,
Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics (Cam-
bridge University Press, 1996).
33I. T. Jolliffe and J. Cadima, “Principal component analysis: A review and recent
developments,” Philos. Trans. R. Soc. A 374, 20150202 (2016).
34T. Z. Jiahao, “K-NODE,” https://github.com/TomJZ/K-NODE.

Chaos 31, 111101 (2021); doi: 10.1063/5.0065617 31, 111101-10

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1016/j.physd.2020.132736
https://doi.org/10.1063/5.0005541
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1063/1.5133386
http://arxiv.org/abs/arXiv:1908.06491
http://arxiv.org/abs/arXiv:1902.11136
http://arxiv.org/abs/arXiv:2001.04385
https://doi.org/10.1137/S1064827501380630
http://arxiv.org/abs/arXiv:1801.01236
http://arxiv.org/abs/arXiv:1907.02452
https://doi.org/10.1088/1367-2630/abeb90
https://github.com/msurtsukov/neural-ode
https://doi.org/10.1080/14786442608564127
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1098/rspa.2003.1183
https://doi.org/10.1143/PTPS.64.346
https://doi.org/10.1016/0094-5765(77)90096-0
https://doi.org/10.1017/S1446181119000105
https://doi.org/10.1098/rsta.2015.0202
https://github.com/TomJZ/K-NODE

	I. INTRODUCTION
	II. KNOWLEDGE-BASED NEURAL ODES (K-NODE)
	III. RESULTS
	A. Learning without knowledge
	B. Knowledge-based learning
	C. Learning from noisy observations

	IV. DISCUSSION
	ACKNOWLEDGMENTS

