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Abstract—1In this paper, we present a first attempt toward
experimental validation of a multi-robot strategy for tracking
manifolds and Lagrangian coherent structures (LCS) in flows.
LCS exist in natural fluid flows at various scales, and they are
time-varying extensions of stable and unstable manifolds of time
invariant dynamical systems. In this work, we present the first
steps toward experimentally validating our previously proposed
real-time manifold and LCS tracking strategy that relies solely
on local measurements. Although we have validated the strategy
in simulations using analytical flow models, experimental flow
data, and actual ocean data, the strategy has never been
implemented on an actual robotic platform. We demonstrate
the tracking strategy using a team of micro autonomous surface
vehicles (mASVs) in our laboratory testbed and investigate the
feasibility of the strategy with vehicles operating in an actual
fluid environment. Our experimental results show that the team
of mASVs can successfully track LCS using a simulated velocity
field, and we present preliminary results showing the feasibility
of a team of mASVs tracking manifolds in real flows using only
local measurements obtained from their onboard flow sensors.

I. INTRODUCTION

We are interested in the development of collaborative
control strategies for distributed sensing and tracking of
coherent structures and manifolds in flows using teams of
autonomous underwater vehicles (AUVs). Coherent struc-
tures are important because they give us insight into the
dynamics of the surrounding fluidic environment. In recent
years, researchers have shown that AUV motion planning and
adaptive sampling strategies can be improved by incorporat-
ing either historical ocean flow data [1]-[3] or multi-layer
partial differential equation (PDE) models of the ocean [4],
[5]. However, accessibility to and the overall quality of the
flow data and/or numerical models is highly dependent on
how well a given region of interest is instrumented. This is
because numerical PDE models are often derived through a
combination of theoretical and field observations, and ocean
current hindcasts, nowcasts, and forecasts provided by Navy
Coastal Ocean Model (NCOM) databases [6] and regional
ocean model systems (ROMS) [2] are assimilated from satel-
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lite and field observations in conjunction with predictions
from numerical PDE models [7], [8]. As such, despite various
public and private organizations’ efforts in the last thirty to
forty years to deploy a combination of stationary, surface,
and at-depth sampling technologies, existing data sets that
describe ocean flows are still mostly finite-time and of low
spatio-temporal resolution.

Geophysical fluid dynamics (GFD) is the study of natural
large-scale fluid flows, such as oceans, eddies, and rivers.
While GFD flows are naturally stochastic and aperiodic,
they do exhibit coherent structures. Recently, Inanc et al.
showed that time and fuel optimal paths in the ocean can
coincide with a specific class of coherent structures called
Lagrangian coherent structures (LCS) [9], [10]. LCS are the
extensions of stable and unstable manifolds to general time-
dependent flows [11] and are similar to separatrices that
divide the flow into dynamically distinct regions. For two-
dimensional (2D) flows, LCS are analogous to ridges defined
by local maximum instability, and can be quantified by local
measures of Finite-Time Lyapunov Exponents (FTLE) [12].
Since LCS are inherently unstable and denote regions of the
flow where more escape events may occur [13], knowledge
of LCS locations is also important for maintaining sensors
in specific monitoring regions.

In our previous work [14], we developed a collaborative
robotic control strategy for tracking stable and unstable man-
ifolds in 2D flows. The technique relies on robots performing
local measurements of the flow field and fusing this infor-
mation to collaboratively track these boundaries. While the
proposed strategy has been validated using the scale invariant
analytical wind-driven double-gyre flow model often used
to describe large scale ocean circulation, experimental data
generated by a flow tank, and actual ocean data, the strategy
has never been validated using an actual robotic platform.
Furthermore, since the distributed estimation of the LCS
boundary locations depends on a variety of factors such
as sensor and actuation noise, the sampling frequency, and
the time scales of the flow dynamics, proper validation of
the tracking strategy described in [15] must be performed
using different ocean data sets. However, given the low
spatio-temporal resolution of existing GFD data sets and the
need to know the locations of the LCS boundaries a priori,
this makes evaluation of any existing and future tracking
strategies extremely challenging.

In this work, we present a first attempt towards the
experimental evaluation of collaborative strategies for mobile
robot teams tracking LCS boundaries in 2D flows using real
robots in a controllable laboratory setting. Specifically, we



describe the development of an appropriate indoor multi-
robot coherent structure tracking testbed, the experimental
methodology employed, and the experimental results ob-
tained in both time-invariant and time-dependent 2D flows.
The novelty of our contribution lies in the experimental
validation of our existing LCS tracking strategy using a team
of micro-autonomous surface vehicles (mASVs) subject to
ocean-like flows.

The paper is structured as follows: Section II provides
some background and briefly summarizes the collaborative
tracking strategy. We describe our experimental methodology
in Section III and present our experimental results in Sec-
tion IV. We conclude with a brief discussion of our results
in Section V and a summary of ongoing and future work in
Section VI.

II. BACKGROUND

As mentioned previously, the existing robotic manifold
and LCS tracking strategy was validated using scale invariant
analytical models that are time-independent and time-varying
[16], experimental flow data created in a flow tank [15],
and actual ocean data [14]. The objective of this work is
to experimentally validate the strategy described using an
actual robotic platform. We briefly summarize our tracking
strategy for the sake of completeness and refer the interested
reader to [15] for further details.

The collaborative control strategy was developed assuming
the following 2D kinematic model for each AUV:

X; = V;cos 0; + u;, (1a)
Yi = Visin6; +v;, (1b)
where x; = [x;,y;]” denotes the vehicle’s position in the

plane, V; and 6; denote respectively the vehicle’s forward
speed and heading, and u; = [u;, v;]7 denotes the velocity of
the fluid measured by the i'" vehicle. In this work, we assume
V; and 6; are the control inputs for each vehicle. The objective
is for the robot team to maintain a valid saddle straddling
formation across the manifold/boundary of interest at all
times to enable the team to iteratively track the boundary
location in the flow.

Given a team of three robots, each denoted as {L,C,R},
robot C is tasked to remain close to the stable manifold
of interest, denoted by Bs. Robots L and R are tasked to
remain on opposite sides of By at all times and thus maintain
the saddle straddle formation at all times. This is achieved
by leveraging the flow field dynamics and estimating the
location of By using only local measurements of the velocity
field. The controller for the straddling robots consists of two
discrete states: a passive control state, Up, and an active
control state, Uy. The robots initialize in the passive state
Up where the objective is to follow the flow of the ambient
vector field. Therefore, V; = 0 for i = L,R. Robots execute
Up until they reach a maximum allowable separation distance
from the tracking robot C. When robots L and R are too far
from robot C, they switch to the active control state, Uy,
where the objective is to navigate to a point on the next

Fig. 1. Three robots tracking Bg in a given conservative vector field. The
robot trajectories are denoted by blue dash-dot curves, the saddle straddle
line segment J is shown by the green dashed line, and p; and pg denote
the target positions for robots L and R, respectively, when executing Uy.

saddle straddle line segment. A sketch of the collaborative
control strategy is shown in Fig. 1.

As the robots move through the flow in formation, they
sample the velocity of the surrounding flow field and commu-
nicate their measurements and their relative positions to robot
C. Robot C uses the flow velocity measurements obtained
by robots L and R to interpolate the vector field along a
collection of points located on the saddle straddling line
segment, denoted by J in Fig. 1. The saddle straddling line
segment J is defined by the positions of robots L and R.
Robot C’s estimate of the manifold location is given by the
point on J with either the maximum or minimum velocity
depending on whether the team is tracking the unstable or
stable manifold. In this work, we assume vehicles operate in
2D conservative planar flows, know the positions of the other
vehicles in relation to itself, and have full communication
capability with the rest of the team. As such, robots L and
R can communicate their measurements to robot C. Robot C
can fuse this information to determine the boundary location
and can communicate information about the projected saddle
straddle line segment to robots L and R. By employing this
technique iteratively, the team can estimate and track the
location of the manifold.

We remind the reader that LCS are time-dependent ex-
tensions of the stable and unstable manifolds of time-
independent systems. And while the strategy was developed
assuming robots operate in planar conservative flow fields,
validation of the strategy using time independent and time-
varying analytical flow models, experimental flow tank data,
and actual ocean data [15] showed success, even for non-
conservative flow fields.

III. METHODOLOGY

To evaluate the tracking strategy using experimental
robotic platforms, we employ our multi-robot Coherent
Structure Testbed (mCoSTe) [17].

A. Experimental Setup

The mCoSTe is an indoor laboratory experimental testbed
that consists of three flow tanks and a fleet of two types
of micro-autonomous surface vehicles: the mASV and the
mASVf. The mASVs are differential drive surface vehicles



Fig. 2.
MR tank. Visible in (b) are the unique patterns of retro-reflective markers
for overhead motion capture tracking.

Photos of (a) multi-robot (MR) tank and (b) three mASVs in the

equipped with a micro-controller board, XBee radio module,
and an inertial measurement unit (IMU). The vehicles are
approximately 12 cm long and have a mass of about 45 ¢g
each. The mASVfs are similar to the mASVs except they
equipped with onboard flow sensors capable of measuring
the relative speed and direction of the local flow field. Each
mASVfis approximately 15 cm long and has a mass of about
110 g. Localization for both the mASVs and the mASVfs is
provided by an external motion capture system.

In addition to the vehicles, we also employed two of the
mCoSTe’s experimental flow tanks: the High Reynolds num-
ber (HiRe) Tank and the Multi-Robot (MR) Tank, which are
respectively 0.6 x 0.6 x 0.3 m? and 3 x 3 x 1 m? in size. The
MR tank is pictured in Fig. 2(a). Flow fields generated in the
HiRe tank are extracted using particle imaging velocimetry
(PIV). Both the HiRe and MR tanks were designed to be
able to create time-independent and time-varying flow fields
that exhibit kinematic and transport features similar to those
observed in the ocean. The flows in the tanks are patterned
after the wind-driven double gyre flow model given by:

u=-—-mA sin(ﬂ:@) cos(n%) — ux, (2a)

_ flt)y ooy df
v = mAcos(n . )sm(ﬂs)dx Wy, (2b)
f(x,1) = esin(or + y)x* + (1 —2esin(or + y))x  (2c)

which is often used to describe large scale recirculation in
the ocean [18]. In Eqn.(2), when & = 0, the flow is time-
independent, while for € # 0, the gyres undergo a periodic
expansion and contraction in the x direction. Additionally, A
approximately determines the amplitude of the velocity vec-
tors, @/2x gives the oscillation frequency, € determines the
amplitude of the left-right motion of the separatrix between
the gyres, Y is the phase, u determines the dissipation, and
s scales the dimensions of the workspace.

We recently showed that the flows created in the HiRe tank
show good correspondence with the analytical model given
by (2) [15], [17]. Fig. 3(a) shows the phase portrait for a
grid of 3 x4 gyres given by (2). The corresponding FTLE
field is shown in Fig. 3(b). The manifolds/LCS correspond
to regions with maximum FTLE measures which are shown
in red. A snapshot of the surface flow measured using PIV
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Fig. 3. (a) Phase portrait for a grid of 3 x4 gyres given by (2). (b)
Corresponding FTLE field at r = 0 for (a) using an integration time of
1.25 sec. (c) Snapshot of surface flow data from the HiRe tank obtained via
PIV. (d) Corresponding FTLE field at # = 0 for (c) using an integration time
of 8sec. [17]

in the HiRe tank for a similar arrangement of gyres is shown
in Fig. 3(c). The HiRe flow was created using a 3 x 4 grid
of flow driving cylinders. By setting the rotational speed
and directions of the cylinders, we can create surface flows
similar to the analytical model. The data shown in Fig.
3(c) was generated to match the time-invariant model. Fig.
3(d) shows the computed FTLE field for the corresponding
HiRe flow data. Gyre-like flows patterned after (2) can also
be created in the MR tank using a similar flow driving
mechanism.

B. Experimental Methodology

To evaluate the feasibility of the proposed LCS tracking
strategy using the mCoSTe, we deployed a team of 3
mASVs/mASVfs in the MR tank. Fig. 2(b) shows 3 mASVs
in the MR tank. We considered the following flow fields in
our experimental evaluation.

1) Case 1: A time-invariant flow field where u; is given
by the time invariant wind driven double-gyre model given
by (2) with A=0.2, =0, u =0, and s = 1.5. In this case
the mASVs were deployed in the MR tank in still water.

2) Case 2a: Similar to Case 1, but the flow field is
periodic (instead of time invariant), with u; given by (2) with
A=02,e=0.1, u=0.005, @ =0.05, y =0, and s = 1.5.
Again, the mASVs were deployed in the MR tank in still
water.

3) Case 2b: Similar to Case 2a but zero-mean Gaussian
noise was added to each u; to simulate sensor measurement
noise on a real robotic vehicle. Again, the mASVs were
deployed in the MR tank in still water.



4) Case 3: Actual flow data obtained from the HiRe tank.
A time-invariant flow field was created in the HiRe tank
using a grid of 3 x4 flow driving cylinders. The data was
collected, scaled, and played back during the manifold/LCS
tracking experiment. As such, the flows “experienced” and
“measured” by the mASVs were actual flows, however, the
flows were created within the HiRe tank. It is important
to note that while the flow field created in the HiRe tank
was modeled after the time-invariant double-gyre model, the
flow data is quite noisy, as evidenced by Figs. 3(c) and 3(d).
Again, the mASVs were deployed in the MR tank in still
water.

5) Case 4: A time-invariant flow field was created using a
2 x 2 grid of flow driving cylinders in the MR tank. A team of
2 mASVfs were deployed such that the two vehicles straddle
a manifold. Each vehicles obtains local measurements of u;
using their onboard flow sensors. Different from the previous
cases, the mASV/fs operate in the MR tank within a real flow
field.

IV. RESULTS

We briefly summarize our experimental results for the
cases enumerated above. We refer the reader to the mul-
timedia attachment to this paper for videos of the various

CEISGS1 .

A. Case 1

In this case, the experiment was performed in still water
in the MR tank where the robots’ flow sensor outputs were
simulated, i.e., u; is given by the time-invariant wind drive
double-gyre model described by (2). Even though there were
no actual flows in the MR tank during these experiments,
the motion of the mASV team was enough to generate a
background flow in the MR tank which can impact the
tracking strategy, making this scenario more realistic than
pure simulations. Fig. 4(b) shows the trajectories (obtained
using an external motion capture system) of 3 mASVs in the
MR tank. It can be seen that the robots remain in a straddling
formation across the manifold, shown in red, until reaching a
hyperbolic point in the flow. At this point, the team shifts to
track another manifold in the flow. This behavior is desired,
and has been observed in previous simulation results [14].

B. Case 2a

The experiments for Case 2a were performed in still water
in the MR tank where the robots’ flow sensor outputs were
simulated using a periodic flow model, i.e., u; is given by
(2) with A=0.2, € =0.1, u =0.005,  =0.05, y =0,
and s = 1.5. Fig. 5 shows the trajectories of the robot team
while tracking the LCS (shown in red) in the flow. The
vehicles were able to maintain a straddling formation across
the moving LCS as can be seen in the middle of the figure.

IThe video is also available at www .pages.drexel.edu/~mam637/
IR0S2014 .mp4
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Fig. 4. (a) Time invariant double gyre flow field with FLTE field overlayed
and (b) paths of a 3 mASVs in MR tank tracking LCS in a simulated time
invariant double gyre flow with FTLE field overlayed. Ridges of high FTLE
values, indicated by red, define the locations of LCS.
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Fig. 5. Paths of 3 mASVs in the MR tank tracking a time varying LCS
of a simulated double gyre flow given by (2).

C. Case 2b

The experiments for Case 2b were similar to Case 2a,
except zero mean Gaussian noise was added to each u; to
emulate sensor measurement error. Fig. 6 compares the robot
trajectories for runs both with and without sensor noise. Even
with a sensor noise standard deviation of 0.14 m/s, which is
equal to about 25% of the maximum velocity in the flow,
the team is still able to track the time-varying LCS.

D. Case 3

For this case, a time-invariant flow field was created in the
smaller HiRe tank using a grid of 3 x 4 flow driving cylin-
ders. The data was collected, scaled, and played back during
the manifold/LCS tracking experiment. In other words, the
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Fig. 6. Paths of 3 mASVs in the MR tank tracking a time varying LCS
of a simulated double gyre flow given by (2) for two different experimental
runs. Run (a) was performed without simulated sensor noise, while run (b)
was performed with simulated sensor noise. The additive sensor noise was
modeled as a zero-mean normal distribution with a standard deviation of
0.14 m/s.
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Fig. 7. Paths of 3 mASVs in the MR tank tracking a time varying LCS
from actual flow data obtained in the High Reynolds number (HiRe) tank.

robots’ simulated flow sensor outputs were given by scaled-
up actual flow data. Fig. 7 shows that the team tracks an LCS
while moving left to right, then after reaching a hyperbolic
point in the flow begins to track another LCS while moving
upward in the figure.

E. Case 4

In this case, a nearly time invariant multi-gyre flow was
generated in the MR tank, and a pair of mASVfs were
deployed to sense the flow field while straddling the man-
ifold/LCS between the two gyres. The experimental setup
with 4 flow generating cylinders is shown in Fig. 8(a). The
trajectories of the two mASVfs operating in the MR tank
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Fig. 8.
like flow and (b) the paths of two mASVfs moving through the flow while
sampling the local flow velocity with onboard sensors. The trajectories of
the mASVS are shown as dashed red curves and the flow measurements are
shown as blue arrows. The intended underlying flow field is shown in gray.

(a) Four spinning cylinders in the MR tank used to create a gyre

and their flow measurements, obtained with their onboard
flow sensors, are shown in Fig. 8(b).

It should be noted that the MR tank was designed to ac-
commodate multiple robots and operate in flows that exhibit
the complexity found in actual ocean flows. However, the
PIV capabilities of the MR tank are limited. Nonetheless, it
is evident the MR tank is approximating the flows we intend
based on the data obtained using the HiRe tank. Indeed, the
HiRe tank operates in a similar Reynolds number regime
with similar flow complexity, but allows for high resolution
PIV to validate the flow fields. By using the HiRe tank to
guide the MR tank experiments, we can be confident that we
are achieving the intended flow dynamics.

V. DISCUSSION

We have previously validated our proposed multi-robot
LCS tracking strategy in simulations using analytical models
and actual flow data, but challenges arise when implementing
the strategy on actual robotic vehicles operating in real flows.
In this paper, we have shown that the strategy is amenable
for use with actual robotic vehicles as long as the velocities
of the robots are larger than the underlying flow velocity. In
addition, the flow sensing results from Case 4 (see Sec. I'V-
E) demonstrate that the mASVfs are capable of reasonably
accurate flow velocity sensing of real flows in the MR tank.
An implication of this ability to measure flows is that a team
of mASVfs can be deployed in the MR tank and track actual
LCS in real time. Even with relatively noisy sensors, we have
previously shown that the LCS tracking strategy is robust
[14]. This shows promise for future field deployments and
evaluation of the strategy in actual ocean flows.

VI. ONGOING AND FUTURE WORK

Initial tests using the flows created in both the HiRe
and MR tanks have shown that there are significant 3D
effects. This is partly due to the manufacturing tolerances
of the flow driving cylinder which can cause the cylinders to
wobble, creating ripples and waves across the tanks. This not
only breaks the 2D assumptions of the flows but also cause
significant experimental challenges when controlling the
mASV/mASVfs. We are currently investigating alternative



designs for the cylinders to reduce these 3D effects. We are
also in the process of developing a large scale PIV system to
enable global measurements of the flow fields created in the
MR tanks. This has proven to be an extremely challenging
endeavor due to the large size of the MR tank. Ideally,
tracer particles would be chosen such that each individual
particle is small enough so as to minimize particle inertial
effects, which ensures the measurements reported are of the
actual fluid motion. Given the large size of the tank, one
challenge is bringing enough pixels to bear to simultaneously
provide adequate coverage of the tank while tracking tens of
thousands of tiny tracer particles. Second, finding suitable
tracer particles has also proven to be difficult since particles
tend to aggregate due to surface tension effects, compro-
mising the quality of the PIV measurements. Current efforts
are focused on investigating alternative techniques that will
enable adequate measurement of the MR tank’s surface flows
to enable more rigorous analyses of the performance of
various robotic experiments.

An immediate direction for future work is to improve
the quality of the estimation of the LCS boundaries by
increasing the team size and better fusing the various flow
measurements obtained using the mASV/fs’ onboard sensors
to determine the location of the LCS boundary. While
preliminary results show much promise, better increasing
the spatial sampling can significantly improve the overall
performance of the system. This however can also introduce
additional challenges in formation control to ensure the team
is able to maintain a desired saddle straddling formation.
Another direction for future work is to better understand the
impact of the mASV geometry on the local flow and its
effects on the onboard flow sensors. This is of particular
interest since our tracking strategies depend on the robot’s
ability to sample the local flow field. By understanding the
interactions between the vehicle shape and the surrounding
fluid, we can better understand their impact on the quality of
the measurements obtained using the onboard flow sensors.
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