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Abstract Extinction of an epidemic or a species is a rare event that occurs due to
a large, rare stochastic fluctuation. Although the extinction process is dynamically
unstable, it follows an optimal path that maximizes the probability of extinction. We
show that the optimal path is also directly related to the finite-time Lyapunov expo-
nents of the underlying dynamical system in that the optimal path displays maximum
sensitivity to initial conditions. We consider several stochastic epidemic models, and
examine the extinction process in a dynamical systems framework. Using the dynam-
ics of the finite-time Lyapunov exponents as a constructive tool, we demonstrate that
the dynamical systems viewpoint of extinction evolves naturally toward the optimal
path.
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1 Introduction

Control and eradication of infectious diseases are among the most important goals for
improving public health. Although the global eradication of a disease (e.g., smallpox)
has been achieved (Breman and Arita 1980), it is difficult to accomplish and remains
a public health target for polio, malaria, and many other diseases, including childhood
diseases (Aylward et al. 2000). The global eradication of a disease is not the only type
of disease extinction process. For example, a disease may “fade out” or become lo-
cally extinct in a region. Since the extinction is local, the disease may be reintroduced
from other regions (Grassly et al. 2005). Additionally, extinction may also occur to
individual strains of a multistrain disease (Minayev and Ferguson 2009), such as
influenza or dengue fever. It is worth noting that the extinction process is also of in-
terest in the fields of evolution and ecology. As an example, bio-diversity arises from
the interplay between the introduction and extinction of species (Azaele et al. 2006;
Banavar and Maritan 2009).

In order to predict the dynamics of disease outbreak and spread as well as to im-
plement control strategies which promote disease extinction, one must investigate
how model parameters affect the probability of extinction. For example, Dykman
et al. (2008) showed that disease control and extinction depend on both epidemio-
logical and sociological parameters determining epidemic growth rate. Additionally,
since extinction occurs in finite populations, another factor in determining extinction
risk is the local community size (Bartlett 1957, 1960; Keeling and Grenfell 1997;
Conlan and Grenfell 2007). Further complications arise from the fact that in gen-
eral, stochastic effects cause random transitions within the discrete, finite populations.
These stochastic effects may be intrinsic to the system or may arise from the external
environment. Small population size, low contact frequency for frequency-dependent
transmission, competition for resources, and evolutionary pressure (de Castro and
Bolker 2005), as well as heterogeneity in populations and transmission (Lloyd et al.
2007) may all be determining factors for extinction to occur. Other factors which can
affect the risk of extinction include the nature and strength of the noise (Melbourne
and Hastings 2008), disease outbreak amplitude (Alonso et al. 2006), and seasonal
phase occurrence (Stone et al. 2007).

In large populations, the intensity of the intrinsic noise is often quite small.
However, it is possible that a rare, large fluctuation which occurs with finite prob-
ability can cause the system to reach the extinct state. Since the extinct state
is absorbing due to effective stochastic forces, eventual extinction is guaranteed
when there is no source of reintroduction (Bartlett 1949; Allen and Burgin 2000;
Gardiner 2004). However, because fade outs are usually rare events in large popula-
tions, typical time scales for extinction may be extremely long.

Birth-death systems (Gardiner 2004; van Kampen 2007), which possess intrin-
sic noise, form an important class of stochastic processes. These systems have been
used in the field of mathematical epidemiology (Bartlett 1961; Andersson and Brit-
ton 2000; Choisy et al. 2007). In these systems, the intrinsic noise arises from the
discreteness of the individuals (or species) and the randomness of their interactions.
To predict probabilities of events occurring at certain times, a description of the sto-
chastic system is provided using the master equation formalism. Stochastic master
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equations are commonly used in statistical physics when dealing with chemical reac-
tion processes (Kubo 1963).

For systems with a large number of individuals, a van Kampen system-size expan-
sion may be used to approximate the master equation by a Fokker–Planck equation
(Gardiner 2004; van Kampen 2007). However, the technique fails in determining the
probability of large fluctuations (Gaveau et al. 1996; Elgart and Kamenev 2004).
Instead, in this article, we will employ an eikonal approximation to recast the prob-
lem in terms of an effective classical Hamiltonian system (Kamenev and Meerson
2008). With high probability, the intrinsic noise will induce extinction of the disease
or species along a heteroclinic trajectory in the phase space of the classical Hamil-
tonian flow. This trajectory is known as the optimal path (to extinction).

It is highly desirable to locate the optimal path since the extinction rate depends
on the probability to traverse this path. Additionally, the effect of a control strategy
on the extinction rate can be determined by its effect on the optimal path (Dykman et
al. 2008). Through the use of the eikonal approximation, we consider a mechanistic
dynamical systems problem rather than the original stochastic problem. Unlike other
methods, this approach enables one both to estimate extinction lifetimes and to draw
conclusions about the path taken to extinction. This more detailed understanding of
how extinction occurs may lead to new stochastic control strategies (Dykman et al.
2008).

In general, the optimal path to extinction is an unstable dynamical object. There-
fore, many researchers have investigated the scaling of extinction rates with respect
to a parameter near a bifurcation point, where the dynamics are slow (Doering et al.
2005; Kamenev and Meerson 2008; Kamenev et al. 2008; Dykman et al. 2008). The
analytical calculation of extinction rates far from a bifurcation point is much more dif-
ficult, and thus researchers often resort to averaging over many stochastic runs (e.g.,
Shaw and Schwartz 2010). The numerical computation of the optimal path trajectory
has been achieved in the past using a shooting method (Kamenev and Meerson 2008).
However, since the procedure is very sensitive to boundary conditions, it is difficult to
implement when analyzing paths far away from bifurcation points or when analyzing
high-dimensional models.

In this article, we develop a novel method for computing the optimal extinction tra-
jectory that relies on the calculation of the dynamical system’s finite-time Lyapunov
exponents (FTLE). The classical Lyapunov exponent provides a quantitative measure
of how infinitesimally close particles in a dynamical system behave asymptotically
as time t → ±∞ (Guckenheimer and Holmes 1986). Similarly, the FTLE provides a
quantitative measure of how much nearby particles separate after a specific amount
of time has elapsed.

The FTLE fields were used by Pierrehumbert (1991) and Pierrehumbert and Yang
(1993) to characterize structures, including mixing regions and transport barriers,
in the atmosphere. Later, these structures were quantified more rigorously by intro-
ducing the idea of Lagrangian Coherent Structures (LCS) (Haller 2000, 2001, 2002;
Shadden et al. 2005; Lekien et al. 2007; Branicki and Wiggins 2010). The definition
of a LCS as a ridge of the FTLE field was introduced by Haller (2002) and formalized
by Shadden et al. (2005). The FTLE method provides a measure of how sensitively
the system’s future behavior depends on its current state, and the LCS, or ridge, is a
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structure which has locally maximal FTLE value. In this article, we will show that
the system displays maximum sensitivity near the optimal extinction trajectory, which
enables us to dynamically evolve toward the optimal escape trajectory using FTLE
calculations.

In this article, we consider three standard epidemic models that contain intrinsic
or external noise sources and illustrate the power of our method to locate the optimal
path to extinction. Even though our examples are taken from infectious disease mod-
els, the approach is applicable to any extinction process or escape process. Section 2
discusses stochastic modeling in the limit of large population size, while Sect. 3 de-
scribes the theory that underlies the Lyapunov exponent computations. In Sect. 4, our
method is used to find the optimal path to extinction for three examples. In Sect. 5,
we demonstrate that the optimal path to extinction also possesses a local maximum
of the FTLE field, and conclusions are contained in Sect. 6.

2 Stochastic Modeling in the Large Population Limit

To introduce the idea of constructing an optimal path in stochastic dynamical systems,
we consider the problem of extinction taken from mathematical epidemiology. The
stochastic formulation of the problem accounts for the random state transitions which
govern the dynamics of the system. To quantitatively account for the randomness in
the system, we will formulate a master equation which describes the time evolution
of the probability of finding the system in a particular state at a certain time (Gardiner
2004; van Kampen 2007).

The state variables X ∈ R
n of the system describe the components of a population,

while the random state transitions which govern the dynamics are described by the
transition rates W(X, r), where r ∈ R

n is an increment in the change of X. Consider-
ation of the net change in increments of the state of the system results in the following
master equation for the probability density ρ(X, t) of finding the system in state X
at time t :

∂ρ(X, t)

∂t
=

∑

r

[
W(X − r; r)ρ(X − r, t) − W(X; r)ρ(X, t)

]
. (1)

If the total population size of the system is N , the components of the state vari-
able can be rescaled to be fractions of the population by letting x = X/N . Then the
general solution (Kubo et al. 1973) for the transition probability from x0 to x in the
time interval from t0 to t can be written as the following path integral:

P(x, t |x0, t0) =
∫

dD(x,p) exp

{
−N

∫ t

t0

ds
[
H

(
x(s),p(s), s

) − p(s)ẋ(s)
]}

, (2)

where dD(x,p) denotes integration over all paths.
The integral in the exponent of (2) is the action, and the Hamiltonian H(x,p; t)

is given in general as

H(x,p; t) =
∑

r

w(x; r)
(
exp(p · r) − 1

)
, (3)
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where w(x; r) is defined as the transition rate W per individual. The Hamiltonian H

depends both on the state of the system x as well as the momentum p, which provides
an effective force due to stochastic fluctuations on the system. It should be noted
that instead of using the Hamiltonian representation, one could use the Lagrangian
representation, which results in the following alternative solution:

P(x, t |x0, t0) =
∫

dD(x) exp

{
N

∫ t

t0

ds L
(
x(s), ẋ(s), s

)}
, (4)

with L(x, ẋ; t) = −H(x,p; t) + ẋ · p.
The action reveals much information about the probability evolution of the system,

from scaling near bifurcation points in non-Gaussian processes to rates of extinction
as a function of epidemiological parameters (Dykman 1990; Dykman et al. 2008). In
order to maximize the probability of extinction, one must minimize the action. The
minimizing formulation entails finding the solution to the Hamilton–Jacobi equation,
which means that one must solve the 2n-dimensional system of Hamilton’s equations
for x and p. The appropriate boundary conditions of the system are such that a solu-
tion starts at a nonzero state, such as an endemic state, and asymptotically approaches
one or more zero components of the state vector. Therefore, a trajectory that is a solu-
tion to the two-point boundary value problem determines a path, which in turn yields
the probability of going from the initial state to the final state. The optimal path to ex-
tinction is the path that minimizes the action in either the Hamiltonian or Lagrangian
representation.

To illustrate an application of the theory for a finite population, we consider
in detail an explicit example, namely the well-known problem of extinction in a
Susceptible-Infectious-Susceptible (SIS) epidemic model. In this example, the popu-
lation consists of S susceptible individuals and I infectious individuals. The popula-
tion is driven via the birth rate μ, which is also equal to the death rate. The transition
rates for X = (S, I )T are given as follows:

W
(
X; (1,0)

) = Nμ, W
(
X; (−1,0)

) = μX1,

W
(
X; (0,−1)

) = μX2, W
(
X; (1,−1)

) = γX2, (5)

W
(
X; (−1,1)

) = βX1X2/N,

where β is the mass action contact rate, γ is the recovery rate, and N is now a pa-
rameter for the average size of the population. For large S, I ∝ N , fluctuations of S

and I are small on average. If these fluctuations are disregarded, one arrives at the
following deterministic mean-field equations for S and I :

Ẋ1 = Nμ − μX1 + γX2 − βX1X2/N, (6a)

Ẋ2 = −(μ + γ )X2 + βX1X2/N. (6b)

Equations (6a)–(6b) are the standard equations of the SIS model in the absence of
fluctuations. For the parameter R0 = β/(μ + γ ) > 1, they have a stable, attracting
solution XA = NxA with x1A = R−1

0 , and x2A = 1 − R−1
0 , which corresponds to en-

demic disease. In addition, (6a)–(6b) have an unstable stationary state (saddle point)
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given by XS = NxS with x1S = 1 and x2S = 0, which corresponds to the extinct, or
disease-free, state.

For N � 1, the steady state distribution ρ(X) has a peak at the stable state XA

with width ∝ N1/2. This peak is formed over a typical relaxation time given in Dyk-
man et al. (2008) and Schwartz et al. (2009). However, in the process of extinction,
we are interested in the probability of having a small number of infectious individ-
uals, which is determined by the tail of the distribution. The distribution tail can
be obtained by seeking the solution of (6a)–(6b) in the eikonal form (Elgart and
Kamenev 2004; Doering et al. 2005; Kubo et al. 1973; Wentzell 1976; Gang 1987;
Dykman et al. 1994; Tretiakov et al. 2003) given by

ρ(X) = exp
[−N S(x)

]
, x = X/N,

ρ(X + r) ≈ ρ(X) exp(−p · r), p = ∂S(x)/∂x,
(7)

where S(x) is the action.
To leading order in N−1, the equation for S(x) has a form of the Hamilton–Jacobi

equation Ṡ = −H(x, ∂x S; t), where S is the effective action, and the effective Hamil-
tonian is given by (3), with w(x; r) = N−1W(X; r) being the transition rates per
individual. The action S(x) can be found from classical trajectories of the auxiliary
system with Hamiltonian H that satisfy the following equations:

ẋ = ∂pH(x,p), ṗ = −∂xH(x,p). (8)

Since the maximum of the probability of extinction is found by minimizing the
action, we compute the trajectory satisfying the Hamiltonian system that has as its
asymptotic limits in time the endemic state as t → −∞ and the extinct state as t →
+∞. The action then has the form from (2) (Wentzell 1976; Gang 1987; Dykman et
al. 1994; Tretiakov et al. 2003):

S(xS) =
∫ ∞

−∞
p · ẋ dt, H(x,p) = 0. (9)

In (9), the integral is calculated for a Hamiltonian trajectory (x(t),p(t))T that starts
as t → −∞ at x → xA,p → 0, and arrives as t → ∞ at the state xS . This trajectory
describes the most probable sequence of elementary events x → x + r that brings the
system to xS .

Several authors have considered how extinction rates scale with respect to a pa-
rameter near bifurcation points (Doering et al. 2005; Kamenev and Meerson 2008;
Kamenev et al. 2008; Dykman et al. 2008) when the distance to the bifurcation point
is small and the dynamics is very slow. For an epidemic model, this means that the re-
productive rate of infection is greater than but very close to one. However, most real
diseases have reproductive rates of infection greater than 1.5 (Anderson and May
1991), which translates into faster growth rates from the extinct state. In general, in
order to get analytic scaling results, one must compute the optimal path using either
the Hamiltonian or Lagrangian equations of motion. However, far from bifurcation
points, one is seldom able to perform the required analysis or computation.
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Additionally, the computation of the optimal path involves the use of a numeri-
cal shooting method (Kamenev and Meerson 2008). The Hamiltonian or Lagrangian
representation of an n-dimensional dynamical system lies in 2n-dimensional space.
Therefore, for even relatively low-dimensional dynamical systems, the use of a shoot-
ing method to find the optimal path to extinction can be quite problematic. In the next
section, we demonstrate how to evolve naturally to the optimal path using a dynami-
cal systems approach.

3 Finite-Time Lyapunov Exponents

We consider a velocity field v : R
2n × I → R

2n given by the Hamiltonian field in (8)
which is defined over the time interval I = [ti , tf ] ⊂ R and the following system of
equations:

ẏ(t; ti ,y0) = v
(
y(t; ti ,y0), t

)
, (10a)

y(ti; ti ,y0) = y0, (10b)

where y = (x,p)T ∈ R
2n, y0 ∈ R

2n, and t ∈ I .
Such a continuous time dynamical system has quantities, known as Lyapunov ex-

ponents, which are associated with the trajectory of the system in an infinite time
limit. The Lyapunov exponents measure the growth rates of the linearized dynamics
about the trajectory. To find the finite-time Lyapunov exponents (FTLE), one com-
putes the Lyapunov exponents on a restricted finite time interval. For each initial
condition, the exponents provide a measure of its sensitivity to small perturbations.
Therefore, the FTLE is a measure of the local sensitivity to initial data. For the pur-
pose of completeness, we briefly recapitulate the derivation of the FTLE. Details
regarding the derivation along with the appropriate smoothness assumptions can be
found in Haller (2000, 2001, 2002), Shadden et al. (2005), Lekien et al. (2007), and
Branicki and Wiggins (2010).

The integration of (10a)–(10b) from the initial time ti to the final time ti +T yields

the flow map φ
ti+T
ti

which is defined as follows:

φ
ti+T
ti

: y0 	→ φ
ti+T
ti

(y0) = y(ti + T ; ti ,y0). (11)

Then the FTLE can be defined as

σ(y, ti , T ) = 1

|T | ln
√

λmax(Δ), (12)

where λmax(Δ) is the maximum eigenvalue of the right Cauchy–Green deformation
tensor Δ, which is given as follows:

Δ(y, ti , T ) =
(

dφ
ti+T
ti

(y(t))

dy(t)

)∗(dφ
ti+T
ti

(y(t))

dy(t)

)
, (13)

with * denoting the adjoint.
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Fig. 1 (Color online) Schematic showing the path from the endemic state (blue) to the extinct state (red).
The optimal path leaves the endemic point along an unstable manifold and connects to the extinct state
along a stable manifold. The magenta and green dashed lines represent trajectories on either side of the
optimal path. The initial starting distance between trajectories near the endemic state expands exponen-
tially in forward time (shown by the cyan lines). Locally, this demonstrates that the finite-time Lyapunov
measure of sensitivity with respect to initial data is maximal along the optimal path. This is evident in the
ridges observed in the evolution of the exponents

For a given y ∈ R
2n at an initial time ti , (12) gives the maximum finite-time Lya-

punov exponent for some finite integration time T (forward or backward), and pro-
vides a measure of the sensitivity of a trajectory to small perturbations.

The FTLE field given by σ(y, ti , T ) can be shown to exhibit “ridges” of local
maxima in phase space. The ridges of the field indicate the location of attracting
(backward time FTLE field) and repelling (forward time FTLE field) structures. In
two-dimensional (2D) space, the ridge is a curve which locally maximizes the FTLE
field so that transverse to the ridge one finds the FTLE to be a local maximum.
What is remarkable is that the FTLE ridges correspond to the optimal path trajec-
tories, which is shown heuristically in Sect. 5. The basic idea is that since the op-
timal path is inherently unstable and observed only through many realizations of
stochastic experiments, the FTLE shows that locally, the path is also the most sen-
sitive to initial data. Figure 1 shows a schematic that demonstrates why the opti-
mal path has a local maximum to sensitivity. If one chooses an initial point on ei-
ther side of the path near the endemic state, the two trajectories will separate ex-
ponentially in time. This is due to the fact that both extinct and endemic states are
unstable, and the connecting trajectory defining the path is unstable as well. Any
initial points starting near the optimal path will leave the neighborhood in short
time.

4 Finding the Optimal Path to Extinction Using FTLE

We now apply our theory of dynamical sensitivity to the problem of locating optimal
paths to extinction for several examples. We consider the case of internal fluctuations,
where the noise is not known a priori, as well as the case of external noise, where the
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noise is specified. In each case, the interaction of the noise and state of the systems
begin with a description of the Hamiltonian (or Lagrangian) to describe the unstable
flow. Then the corresponding equations of motion are used to compute the ridges
corresponding to maximum FTLE, which in turn correspond to the optimal extinction
paths (Schwartz et al. 2010).

4.1 Example 1—Extinction in a Branching-Annihilation Process

For an example of a system with intrinsic noise fluctuations which has an analytical
solution, we consider extinction in the stochastic branching-annihilation process

A
λ−→ 2A and 2A

μ−→ ∅, (14)

where λ and μ > 0 are constant reaction rates (Elgart and Kamenev 2004; Assaf
et al. 2008). Equation (14) is a single species birth-death process and can be thought
of as a simplified form of the Verhulst logistic model for population growth (Nåsell
2001).

The stochastic process given by (14) contains intrinsic noise which arises from the
randomness of the reactions and the fact that the population consists of discrete indi-
viduals. This intrinsic noise, which can generate a rare sequence of events that cause
the system to evolve to the empty state, can be accounted for using a master equation
approach. The probability Pn(t) to observe, at time t , n individuals is governed by
the following master equation:

Ṗn = μ

2

[
(n + 2)(n + 1)Pn+2 − n(n − 1)Pn

] + λ
[
(n − 1)Pn−1 − nPn

]
. (15)

Using the formalism of Assaf et al. (2008), (15) is recast as the following exact
evolution equation for G(ρ, t):

∂G

∂t
= μ

2

(
1 − ρ2)∂2G

∂ρ2
+ λρ(ρ − 1)

∂G

∂ρ
, (16)

where G is a probability generating function given by

G(ρ, t) =
∞∑

n=0

ρnPn(t), (17)

and where ρ is an auxiliary variable.

We substitute the eikonal ansatz G(ρ, t) = exp[−S(ρ, t)], where S is the action,
into (16) and neglect the higher-order ∂2 S/∂ρ2 term. This results in a Hamilton–
Jacobi equation for S(ρ, t). By introducing a conjugate coordinate q = −∂S/∂ρ and
by shifting the momentum p = ρ − 1, then one arrives at the following Hamiltonian:

H(q,p) =
(

λ(1 + p) − μ

2
(2 + p)q

)
qp. (18)
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Hamilton’s equations are therefore given as

q̇ = ∂H

∂p
= q

[
λ(1 + 2p) − μ(1 + p)q

]
, (19a)

ṗ = −∂H

∂q
= p

[
μ(2 + p)q − λ(1 + p)

]
. (19b)

The Hamiltonian given by (18) has three zero-energy curves. The first is the mean-
field zero-energy line p = 0, which contains two hyperbolic points given as h1 =
(q,p) = (λ/μ,0) and h0 = (q,p) = (0,0). The second is the extinction line q = 0,
which contains another hyperbolic point given as h2 = (q,p) = (0,−1). The third
zero-energy curve is non-trivial and is given as follows:

q = 2λ(1 + p)

μ(2 + p)
. (20)

The segment of the curve given by (20) which lies between −1 ≤ p ≤ 0 corresponds
to a heteroclinic trajectory. As t approaches −∞, the trajectory exits the hyperbolic
point h1 along its unstable manifold and enters the hyperbolic point h2 along its
stable manifold as t approaches ∞. This heteroclinic trajectory is the optimal path to
extinction and describes the most probable (rare) sequence of events which evolves
the system from a quasi-stationary state to extinction (Assaf et al. 2008).

To show that the FTLE evolves to the optimal path, we calculate the FTLE field
using (19a)–(19b). Figure 2(a) shows the forward FTLE plot computed using (19a)–
(19b) for T = 6, with λ = 2.0 and μ = 0.5. In Fig. 2(a), one can see that the optimal
path to extinction is given by the ridge associated with the maximum FTLE.

Not all of the attracting structures are shown in Fig. 2(a) because the maximum
forward time FTLE identifies repelling structures where nearby initial conditions di-
verge. The other attracting structures may be found by computing the backward FTLE
field. By overlaying the forward and backward FTLE fields, one can see in their en-
tirety all three zero-energy curves including the optimal path to extinction in Fig. 2(b).
Also shown in Fig. 2(b) are the analytical solutions to the three zero-energy curves
given by p = 0, q = 0, and (20). There is excellent agreement between the analyt-
ical solutions of all three curves and the LCS which are found through numerical
computation of the FTLE flow fields.

4.2 Example 2—SIS Epidemic Model—External Fluctuations

As another general application of the extinction theory for finite populations, we con-
sider the well-known problem of extinction in a Susceptible-Infectious-Susceptible
(SIS) epidemiological model. The SIS model is given by the following system of
equations:

Ṡ = μ − μS + γ I − βIS, (21a)

İ = −(μ + γ )I + βIS, (21b)
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Fig. 2 (Color online) FTLE
flow fields computed using
(19a)–(19b) with λ = 2.0 and
μ = 0.5. The integration time is
T = 6 with an integration step
size of t = 0.1 and a grid
resolution of 0.01 in both q

and p. (a) Forward FTLE field
with the optimal path to
extinction given by the LCS.
(b) Average of the forward and
backward FTLE fields with the
three zero-energy curves given
by the LCS and overlaid with
the analytical solution of these
curves given by p = 0, q = 0,
and (20). Note that the
averaging affects only the value
of the FTLE and not the
structure of the FTLE field

where μ represents a constant birth and death rate, β represents the contact rate,
and γ denotes the rate of recovery. If we assume that the total population size is
constant and can be normalized to S + I = 1, then (21a)–(21b) can be rewritten as
the following one-dimensional (1D) equation:

İ = −(μ + γ )I + βI (1 − I ). (22)

The stochastic version of (22) is given as

İ = −(μ + γ )I + βI (1 − I ) + η(t) = F(I) + η(t), (23)

where η(t) is uncorrelated Gaussian noise with zero mean and models random migra-
tion to and from another population (Alonso et al. 2006; Doering et al. 2005). Equa-
tion (23) has two equilibrium points given by I = 0 (corresponding to the disease-free
state) and I = 1 − (μ + γ )/β (corresponding to the endemic state). One can use the
Euler–Lagrange equation of motion to find the optimal path of extinction from the
endemic state to the disease-free state, where the Lagrangian is determined by (23)
and is given as follows:

L(I, İ ) = [
η(t)

]2 = [
İ − F(I)

]2
. (24)

Computation of the Euler–Lagrange equation gives the following:

F(I)F ′(I ) − Ï = 0. (25)
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If one multiplies (25) by İ followed by an integration with respect to t , then one
obtains

F(I)2

2
− İ 2

2
= E, (26)

where E is an arbitrary constant. Using the fact that the optimal path passes through
the two equilibrium points stated above, then one finds that the optimal path to ex-
tinction (as well as its counterpart path from the disease-free state to the endemic
state) is given by the following equation:

İ = ±F(I). (27)

As in the first example, one can numerically compute the optimal path to extinction
using the FTLE. In this example, we calculate the FTLE field using the following 2D
system which is equivalent to (25):

İ = p, (28a)

ṗ = F(I)F ′(I ) = (
βI (1 − I ) − κI

)(
β(1 − 2I ) − κ

)
, (28b)

where κ = μ + γ . Figure 3(a) shows the forward FTLE plot computed using (28a)–
(28b) for T = 5, with β = 5.0 and κ = 1.0. In Fig. 3(a), one can see that the optimal
path from the endemic state to the disease-free state is given by the ridge associated
with the locally maximal FTLE.

One also can find the optimal path from the disease-free state to the endemic state
by computing the backward FTLE. By overlaying the forward and backward FTLE
fields, one can see the optimal path to extinction along with its counterpart optimal
path in Fig. 3(b). Also shown in Fig. 3(b) are the two analytical solutions to the
optimal path to extinction and its counterpart optimal path which are given by (27).
There is excellent agreement between the analytical solutions to the two optimal paths
and the ridges which are found through numerical computation of the FTLE flow
fields.

4.3 Example 3—SIS Epidemic Model—Internal Fluctuations

We now consider the 1D stochastic (internal) version of the SIS epidemic model
given by (22). The probability Pn(t) to observe, at time t , n infectious individuals is
governed by the following master equation:

Ṗn = (μ + γ )
[
(n + 1)Pn+1 − nPn

] + β
[
(n − 1)

(
1 − (n − 1)

)
Pn−1 − n(n − 1)Pn

]
.

(29)
Using the formalism of Gang (1987), one then has the following Hamiltonian associ-
ated with (29):

H(I,p) = (μ + γ )I
(
e−p − 1

) + βI (1 − I )
(
ep − 1

)
, (30)

and Hamilton’s equations are therefore given as

İ = ∂H

∂p
= −(μ + γ )Ie−p + βI (1 − I )ep, (31a)

ṗ = −∂H

∂I
= −(μ + γ )

(
e−p − 1

) + β
(
ep − 1

)
(2I − 1). (31b)
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Fig. 3 (Color online) FTLE
flow fields computed using
(28a)–(28b) with β = 5.0 and
κ = 1.0. The integration time is
T = 5 with an integration step
size of t = 0.1 and a grid
resolution of 0.01 in both I

and p. (a) Forward FTLE field
with the optimal path to
extinction given by the LCS.
(b) Average of the forward and
backward FTLE fields with the
optimal path to extinction and
its counterpart optimal path
given by the LCS and overlaid
with the analytical solution of
the optimal paths given by (27).
Note that the averaging affects
only the value of the FTLE and
not the structure of the FTLE
field

Fig. 4 (Color online) FTLE
flow field computed using
(31a)–(31b) with β = 2.0 and
κ = 1.0. The integration time is
T = 10 with an integration step
size of t = 0.1 and a grid
resolution of 0.005 in both I

and p. The optimal path to
extinction is given by the LCS

Although there is no analytical solution for the optimal path to extinction for
(31a)–(31b), we can once again determine the optimal path by computing the FTLE
flow field associated with this system. Figure 4 shows the forward FTLE plot com-
puted using (31a)–(31b) for T = 10, with β = 2.0 and κ = 1.0. As we have seen
previously, the optimal path to extinction from the endemic state to the disease-free
state is given by the ridge associated with the locally maximal FTLE.
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5 Maximal Sensitive Dependence to Initial Data Near the Optimal Path

The main heuristic argument of this section is to show that the path which maximizes
the probability of extinction also has a finite-time Lyapunov exponent (FTLE) that
attains its local maximum on the path. We consider a general system of equations
and show how the maximum unstable direction along the optimal path to extinction
governs the local hyperbolic dynamics.

From the Hamiltonian or Lagrangian equations of motion, the process which
leads to extinction consists of a trajectory which emanates from a stable steady
state xa ∈ R

n and approaches the extinct state xs ∈ R
n. Since the stable and ex-

tinct states are both regular saddles (or unstable foci) in the variational formulations,
they both have hyperbolic structure. Moreover, every point along the trajectory con-
necting the two states as t → ±∞ is assumed to possess a local hyperbolic struc-
ture. As an example, consider the Langevin problem having a vector field of position
V : R

n → R
n, which has the associated Lagrangian L(x, ẋ) = ‖ẋ −V (x)‖2/2 to de-

scribe the action. Converting to a Hamiltonian formulation leads one to the following
2n-dimensional equations of motion and Hamiltonian:

ẋ = p + V (x), (32a)

ṗ = −V ′(x)p, (32b)

H(x,p) = ‖p‖2

2
+ p · V (x), (32c)

where V ′(x) ≡ ∂V (x)
∂x is the Jacobian matrix evaluated at x.

It is immediate from (32a)–(32c) that {(x,p) | p = 0} is an invariant manifold. In
addition, the optimal path must lie along the H(x,p) = 0 surface, which means that
in addition to the p = 0 manifold, the zero surface includes {(x,p) | p = −2V (x)}.

To clarify the direction along the optimal path as well as the local geometry, we
make the following assumptions regarding V (x):

1. V (x) is smooth,
2. V (xa) = V (xs) = 0,
3. V ′(xa) has eigenvalues with negative real parts, and V ′(xs) has at least one eigen-

value with positive real part.

Items 2 and 3 imply that xa is an attracting steady state and xs is an unstable steady
state in the deterministic dynamical system. We now assume that the optimal path
must satisfy

lim
t→+∞

(
x(t),p(t)

) = (xs ,0), while lim
t→−∞

(
x(t),p(t)

) = (xa,0).

Since H(x(t),p(t)) = 0 along the path, the limits provide direction along the optimal
path.

The optimal path lies on the curve

C(x,p) = {
t ∈ (−∞,∞) | p(t) = −2V

(
x(t)

)}
,
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and p = 0 corresponds to the zero fluctuation case. We shift the optimal path to the
origin by using the following 2n-dimensional transformation:

u = x, (33a)

w = p + 2V (x), (33b)

Ĥ (u,w) = ‖w‖2

2
− w · V (u). (33c)

The new equations of motion are now:

u̇ = ∂Ĥ/∂w = w − V (u), (34a)

ẇ = −∂Ĥ/∂u = V ′(u)w. (34b)

The optimal path now is described by the curve

C(u,w) = {
t ∈ (−∞,∞) | w(t) = 0, u̇(t) = −V

(
u(t)

)}
,

while the zero fluctuation case given by p = 0 now corresponds to w = 2V (u).
The linearized variation along the optimal path C(u,w) is given by the following

matrix initial value problem from (34a)–(34b):

Ẋ =
[−V ′(u(t)) In

0 V ′(u(t))

]
X ≡ J

(
u(t),0

)
X, X(0) = I . (35)

For a fixed time t0 such that u(t0) = u0, the local eigenvalues of (35) are given
by the eigenvalues of ±V ′(u0) and are assumed to have nonzero real part for any
(u0,0) ∈ C(u,w). Thus, the optimal path is hyperbolic at every point. We also suppose
the existence of a local coordinate system on the path so that there exists a set of
linearly independent directions pointwise.

The solution to the linear variational equation about (u,w) = (u0,0) for 0 < t � 1
is given by X(t) � exp (tJ (u0,0)). We assume for simplicity that the eigenvalues of
V ′(u0) have algebraic multiplicity of one. The eigenvalues of J (u0,0) are given by
{±λi}ni=1, where λi are eigenvalues of V ′(u0). To examine the dynamic instability
that dominates locally, let λmax denote the eigenvalue with largest real part and be
such that Re(λmax) > 0. Since −λmax has the most negative real part, its eigendirec-
tion denotes the strongest contracting direction.

For any (u0,0) on the path, the existence of a set of linearly independent eigenso-
lutions of J (u0,0) implies there is a transformation X = PY , with P ∈ L

2n×2n that
diagonalizes the linear variational equation given by (35). Without loss of general-
ity, we can also assume that the diagonal consists of ordered descending eigenvalues
based on the real part. Therefore, the linear variational system has the form

Ẏ =

⎡

⎢⎢⎢⎢⎢⎢⎣

λmax
. . .

λn −λn
. . .

−λmax

⎤

⎥⎥⎥⎥⎥⎥⎦
Y . (36)
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For any initial value, the solution to (36) is

xp(t;x0) = (
x1(t), x2(t), . . . , x2n(t)

)
(37)

= (
eλmaxt x10, e

λ2t x20, . . . , e
λnt xn0,

e−λnt x(n+1)0, . . . , e
−λ2t x(2n−1)0, e

−λmaxt x2n0
)
. (38)

To show that the FTLE takes it maximum along the path, we notice that any point
along the path is hyperbolic with a saddle structure. Therefore, we consider an arbi-
trary initial condition lying within a small domain containing the origin. Since almost
any initial condition hits the boundary of the domain in finite time due to the saddle
structure of the origin, we use the escape time as the final time for the FTLE. The
definition we use of the FTLE is the direct comparison of the distance between two
close trajectories as follows:

σ(t;x0) = 1

t
ln

(∥∥xp(t;x0 + ε) − xp(t;x0)
∥∥)

, (39)

where ε ∈ R
2n.

Defining the domain to be the 2n-dimensional hypercube D = [−1,1]2n, then
clearly any point not on the unstable manifold will escape in the x1 direction cor-
responding to the eigenvalue with maximal real part. We exploit the fact that the
dynamics is governed by the most unstable direction by assuming |λmax| � |λi |,
i = 2, . . . , n. If the initial condition lies within a distance δ of the unstable manifold
with 0 < δ � 1, then the time to escape from the domain for an arbitrary nonzero
initial condition is given by

tf � − log (δ)

λmax
. (40)

Using the definition of the exponent given by (39), we have that

σ(tf ,x0) = −λmax ln

(∣∣∣∣
ε1

δ

∣∣∣∣
2

+
∣∣∣δ− λ2

λmax ε2

∣∣∣
2 + · · · +

∣∣∣δ− λn
λmax εn

∣∣∣
2 +

∣∣∣δ
λn

λmax εn+1

∣∣∣
2

+ · · · +
∣∣∣δ

λ2
λmax ε2n−1

∣∣∣
2 + |δε2n|2

)/(
2 ln(δ)

)
. (41)

Since |λmax| � |λi |, and since ±λmax dominates the expanding and contracting
directions, then for δ small, we may just consider

σ(tf ,x0) = −λmax ln (ε2
1/δ2 + ε2

2nδ
2)

2 ln δ
. (42)

Furthermore, we find that

∂σ (tf ;x0(δ))

∂δ
= λmax ln(ε2

1)

2δ(ln δ)2

(
1 + δ4ε2

2n

ε2
1

)
+ O

(
δ3

ln δ

)
, (43)

which can be shown to be negative assuming ε1 � 1. Therefore, the FTLE as a func-
tion of distance to the stable invariant manifold is a decreasing function, and thus
takes it maximum values on the manifold.
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6 Conclusions

In this article, we have considered the dynamics of general stochastic epidemic mod-
els and their extinction properties in finite populations. The random fluctuations con-
sidered were from both internal fluctuations, which arise from mass action kinetics, as
well as external random forces, which may be due to random population migrations.
By examining the extinction processes from the master equation perspective, eikonal
approximations in the large population limit give a way to solve for the probability
distribution as a function of time. A variational principle applied to the exponent of
the probability distribution near the steady state was used to maximize the probability
to extinction from a disease endemic state.

Maximizing the probability to extinction means minimizing the action, which in
turn generates a Hamiltonian (or Lagrangian) formulation that determines the flow
from endemic to extinct states. The formulation describes the random fluctuations
as a deterministic effective force that overcomes the instability of the extinct state.
Such a deterministic flow describes the optimal path to extinction from an endemic
state. Using the above variational formulation, we explicitly derived the equations
of motion describing the optimal path to extinction in three different models from
epidemiology as a two point boundary value problem.

The main result of our paper is that the optimal path is intimately related to the
maximal sensitivity of the dynamics of unstable Hamiltonian flows. Specifically, we
introduced a novel method to find the optimal path to extinction that relies on the
computation of the finite-time Lyapunov exponent field for the dynamical flow under
consideration. The exponents provide a measure of sensitivity to initial conditions in
finite time. Moreover, we have shown that the system possesses maximal sensitiv-
ity near the optimal path to extinction. Therefore, we are able to use the finite-time
Lyapunov exponents to dynamically evolve toward the optimal path trajectory.

To demonstrate the equivalence of the maximal sensitivity and the optimal path
maximizing the probability of extinction, we have considered three prototypical ex-
amples from mathematical epidemiology. In the examples, we have considered both
internal and external noise, and we have considered both a Hamiltonian and La-
grangian formulation. Furthermore, in each of the three examples, we have shown
that the optimal path to extinction is equated with having a (locally) maximal sen-
sitivity to initial condition, which implies a relation at a fundamental level between
the optimal path and the FTLE. Even though there exist many possible paths to ex-
tinction, the dynamical systems approach converges to the path that maximizes the
probability to extinction.

An example of the evolution of the FTLE flow field showing the convergence of
the locally maximal FTLE ridge to the optimal path is shown in Fig. 5. The FTLE
flow field is computed for T = 10 using (31a)–(31b) for the SIS epidemic model
with internal fluctuations (Sect. 4.3). Figure 5 shows snapshots of the FTLE field
taken at t = 1, t = 3, t = 5, t = 7, and t = 9. The final snapshot at t = 10 is shown in
Fig. 4. A video that shows the evolution of the FTLE flow field can be found online
as ancillary material.

The parameter values chosen for the three examples are such that the extinct and
endemic states are far away from one another, implying that the system is operating
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Fig. 5 (Color online) Snapshots taken at (a) t = 1, (b) t = 3, (c) t = 5, (d) t = 7, and (e) t = 9 showing the
evolution of the FTLE flow field computed using (31a)–(31b) with β = 2.0 and κ = 1.0. The integration
time is T = 10 with an integration step size of t = 0.1 and a grid resolution of 0.005 in both I and p. The
final snapshot in the series is taken at t = 10 and is shown in Fig. 4. A video that shows the evolution of
the FTLE flow field can be found online as ancillary material

far from any bifurcation points. This result is very important, since in general, no
approximate analytical treatment, like the one performed in Dykman et al. (2008),
is possible if the system’s dynamics is not sufficiently close to the bifurcation point.
However, any scaling behavior of the exponent in the probability of extinction may
still be computed along the optimal path, which is the important advance afforded by
the new procedure proposed in this paper.

In the future, we plan on considering more complicated systems. Of particular in-
terest are bistable systems (e.g., adaptive networks (Shaw and Schwartz 2008) and
the Schlögl birth-death process (Doering et al. 2007)), and higher-dimensional sys-
tems (e.g., multistrain epidemic models (Shaw et al. 2007)). Because the method is
general, and unifies dynamical systems theory with the probability of extinction, we
expect that any system found in other fields can be understood using this approach.
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