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Abstract 
     A three-dimensional wave packet generated by a 
local disturbance in a hypersonic boundary layer flow 
is studied with the aid of the previously solved initial-
value problem.  The solution to this problem can be 
expanded in a biorthogonal eigenfunction system as a 
sum of discrete and continuous modes.  A specific 
disturbance consisting of an initial temperature spot 
is considered, and the receptivity to this  initial tem-
perature spot is computed for both the two-
dimensional and three-dimensional cases.  Using 
previous analysis of the discrete and continuous spec-
trum, we numerically compute the inverse Fourier 
transform.  The two-dimensional inverse Fourier 
transform is found for Mode S, and the result is com-
pared with the asymptotic approximation of the Fou-
rier integral.  Due to the synchronism between Mode 
F and entropy/vorticity modes, it is necessary to de-
form the path of integration around the associated 
branch cut.  Additionally, the inverse Fourier trans-
form for a prescribed spanwise wave number is com-
puted for  three-dimensional Mode S. 

 
Nomenclature 

A  = vector function (direct problem) 

jA  = j th component of vector A  

B  = vector function (adjoint problem) 

jB  = j th component of vector B  

c  = phase speed, mode weight 
M  = Mach number 
Pr  = Prandtl number   
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Re  = Reynolds number    

 u  = streamwise velocity disturbance 
 v  = normal velocity disturbance 
 w  = spanwise velocity disturbance        

x  = streamwise coordinate 

0Y  = location of temperature spot 
y  = normal coordinate 
z  = spanwise coordinate 
α  = streamwise wave number 
β  = spanwise wave number 
γ  = specific heat ratio   
θ  = temperature disturbance 
µ  = viscosity disturbance 

 π  = pressure disturbance 
ρ  = density disturbance   
ω  = frequency 

  
Subscripts 
e  = upper boundary layer edge 
p  = Laplace transform 
sp  = saddle point 
α  = streamwise Fourier transform 
β  = spanwise Fourier transform 
 
Superscripts 
T  = transposed 
* = dimensional 
 

Introduction 
    The transition process from la minar to turbulent 
flow in hypersonic boundary layers has been studied 
for many years.  However, our understanding of this 
phenomenon is still very poor compared to the low 
speed case.1  Several reasons exist for this difference.  
For example, experimental conditions are severe in 
hypersonic wind tunnels.  Because of high levels of 
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free-stream noise, it is difficult to perform experi-
ments with controlled disturbances, and it is difficult 
to design perturbers providing high-frequency artifi-
cial disturbances of well-controlled characteristics. 
     Furthermore, interpretation of experimental data is 
not straightforward, and this issue leads to the need 
for close coordination between theoretical modeling 
and experimental design and testing.2  
     Experiment s  with controlled disturbances could 
provide insight into the governing mechanisms asso-
ciated with hypersonic laminar-turbulent transition, 
with a sharp cone being a good candidate for transi-
tion studies due to its relatively simple geometry.  
Several methods for excitation of artificial distur-
bances in a hypersonic boundary layer are available.  
These methods could be used to generate either two-
dimensional or three-dimensional wave packets of a 
broad frequency band.   
     Additionally, due to advances in computational 
fluid dynamics, it is possible to perform reliable 
simulations of laminar-turbulent transition.  Ma and 
Zhong3,4 and Zhong and Ma5 have performed direct 
numerical simulations to better understand the 
mechanisms leading to hypersonic boundary layer 
transition.     
     Accompanying these experiments, both wind-
tunnel and numerical, should be theoretical modeling 
and studies of the development of wave packets in 
hypersonic boundary layers. 
     Gustavsson6 solved a two-dimensional (2D) in i-
tial-value problem for incompressible boundary layer 
flows.  Fedorov and Tumin2 analyzed a 2D initial-
value problem in a compressible boundary layer.  The 
problem was solved using a Fourier transform with 
respect to the streamwise coordinate and a Laplace 
transform with respect to time.  It was shown that the 
dispersion relation for the discrete spectrum is non-
analytic due to the synchronism of the first mode 
(Mode F) with the entropy and vorticity waves of the 
continuous spectrum, but the inverse Laplace trans-
form is regular at the synchronism point.  Although 
this regularity ensures that the inverse Fourier trans-
form for the wave packet could be performed, this 
computation was not done.  Forgoston and Tumin7 
extended the work of Ref. 2 by solving the initial-
value problem for three-dimensional (3D) wave 
packets.   Once again, the inverse Fourier transform 
was not computed.   
     Mack8,9 used linear stability theory to perform 
extensive studies of the behavior of 2D and 3D insta-
bility modes for both the temporal and spatial prob-
lems.  In particular, he discovered that for compressi-
ble flows, higher acoustic instability modes exist 
along with the first mode.  However, even though the 
behavior of these modes is understood, the mecha-
nism by which the modes are generated (receptivity 
problem) is still a subject of research.  Throughout 

the 1980s, 1990s and 2000s, Fedorov and colleagues 
discovered many results involving the receptivity of 
high speed flows. One can find a complete bibliogra-
phy in Ref. 10. 
     Particularly, this  spatial analysis of the 2D insta-
bility modes revealed the following:  (1) in the region 
of the leading edge, two discrete modes, Mode F and 
Mode S, are synchronized with fast and slow acoustic 
waves respectively; (2) at a downstream location, 
Mode F is synchronized with the entropy and vortic-
ity waves; (3) farther downstream, Mode F and Mode 
S also could be synchronized.11  It is important to 
understand these features due to the role they may 
have in the transition process.  Later on, similar fea-
tures of Mode F and Mode S were seen in the 2D 
temporal problem2.      
     For the 3D initial-value problem, Mode F and 
Mode S was analyzed in Ref. 7 for one particular 
choice of parameters, and the following features were 
revealed:  (1) the synchronism of  Mode S with 
acoustic waves at low wave number is primarily two-
dimensional; (2) at high angles of dis turbance propa-
gation, Mode F is no longer synchronized with en-
tropy and vorticity waves; (3) at high angles of dis-
turbance propagation, the synchronism between 
Mode S and Mode F no longer leads to a Mode S 
instability, and at even higher angles of disturbance 
propagation, Mode S and Mode F are not synchro-
nized.  A complete understanding of the features of 
the spectrum is needed to compute the inverse Fou-
rier transform. 
     We will briefly review the previously solved ini-
tial-value problem for a three-dimensional wave 
packet in a hypersonic boundary layer flow.  Our 
objective is to consider the specific disturbance of an 
initial temperature spot.  The receptivity to the tem-
perature spot is found for both the 2D and 3D cases.  
The 2D inverse Fourier transform is computed for 
both Mode F and Mode S.  Because of the synchro-
nism of Mode F with entropy/vorticity modes, the 
path of integration must be deformed around the 
branch cut that is associated with this synchronism.  
We show that the computed transform is independent 
of the path choice.  The computed inverse Fourier 
transform for Mode S is compared with the asymp-
totic approximation of the Fourier integral.  Lastly, 
we compute the 3D inverse Fourier transform for a 
prescribed value of the spanwise wave number for 
Mode S, and we compare this with the asymp totic 
representation of the Fourier integral. 

 
Problem Formulation 

    We consider a three-dimensional parallel boundary 
layer flow of a calorically perfect gas.  At the initial 
time, 0t = , a three-dimensional localized distur-
bance is introduced into the flow.  The problem is to 
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describe the downstream evolution of the perturba-
tion.   Denoting  
 

( ), / , , , , / , , / Tu u y v y w w yπ θ θ= ∂ ∂ ∂ ∂ ∂ ∂A      (1) 

 
as the disturbance vector function, it is possible to 
rewrite the system of linearized, dimensionless gov-
erning equations (continuity equation, x , y  and z  
momentum equations and energy equation) in the 
following matrix operator form: 
 

0 10 11 2

2 2 2

3 4 5 62

2 2

7 8 2

y y y t x

x y z x zx

y z z

 ∂ ∂ ∂ ∂ ∂+ = + + + ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂      + + + +
∂ ∂ ∂ ∂ ∂∂

∂ ∂
            +

∂ ∂ ∂

A A A AL H H A H

A A A AH H H H

A A
H H

   (2)               

    
where 0 10 11 2 3 4 5 6 7, , , , , , , , ,L H H H H H H H H  and 

8H  are 8 8×  matrices.  The explicit form of these 
matrices can be found in Ref. 7.  At the initial time, 

0t = , the disturbance vector is denoted as 
 

0( , , ,0) ( , , )x y z x y z=A A                   (3) 
 
The boundary conditions are 

 
0 : 0y u v w θ=      = = = =  

(4) 

( ): 0 1,...,8jy A j→ ∞      →     =  

 
These boundary conditions correspond to the no-slip 
condition and zero temperature disturbance on the 
wall, and all disturbances decaying to zero far outside 
the boundary layer. 
 

Solution of the Initial -Value Problem 
     The problem is solved using a Fourier transform 
with respect to the streamwise coordinate, x , a Fou-
rier transform with respect to the spanwise coordi-
nate, z , and a Laplace transform with respect to 
time.  The inverse Laplace transform of  pαβA , the 

solution of the transformed equations, is  determined 
by poles (relevant to the discrete spectrum) and by 
branch cuts (relevant to the continuous spectrum).  
By integrating along an appropriate contour in the 
complex p  plane (see Ref. 7), the inverse Laplace 
transform can be written as a sum of integrals along 

the sides, γ +  and γ − , of each branch cut and a sum 
of residues resulting from the poles  i.e. 

( )n

1
2

Res

m m

pt pt
p p

m

pt
p

n

e dp e dp
i

e

αβ αβ αβ
γ γ

αβ

π + −

 
 = − + +  
 

      

∑ ∫ ∫

∑

A A A

A

 

(5) 
Details of the problem formulation and solution can 
be found in Ref. 7. 
 
Discrete and Continuous Spectrum 
     Discrete modes are given by the poles’ contribu-
tion to the inverse Laplace transform, i.e. the residues 
shown in Eq. (5).  Continuous modes are given by the 
branch cuts’ contribution to the inverse Laplace 
transform, i.e. the integrals shown in Eq. (5).  There 
are three branch cuts associated with the continuous 
spectrum.  They are shown in Fig. 1 for 0.2α =  and 

0.14β = . 

 

-0.005 -0.004 -0.003 -0.002 -0.001 0.000
-0.6

-0.4

-0.2

0.0

0.2
M=5.6, Re=1219.5, α=0.2, β=0.14

p i

p
r

 
Fig. 1  Branch cuts of the continuous spectrum in 
the complex plane p . 
 
The upper and lower branch cuts correspond to fast 
and slow acoustic waves.  These waves travel with 

the respective phase speeds 
2 21 /

1
e

c
M
β α+

= ± .  

The horizontal branch cut contains a region of over-
lapping vorticity modes as well as a region of entropy 
disturbances overlapping the two vorticity modes.  
Both vorticity and entropy waves travel downstream 
with a phase speed 1c = .  If an eigenvalue belongs to 
the discrete spectrum, then the associated eigenfunc-
tion decays exponentially outside the boundary layer 
( y → ∞ ).  Eigenfunctions associated with continuous 
modes oscillate outside the boundary layer.  Details 
regarding the discrete spectrum and the various re-
gions of the continuous spectrum can be found in 
Ref. 7. 
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     The behavior of the spectrum must be understood 
in order to compute the inverse Fourier transform.  
To illustrate features of the spectrum, we consider a 
boundary layer over an adiabatic sharp cone at zero 
angle of attack.  The length scale is 

( )* * * * */e e eL x Uµ ρ=  and the Reynolds number is  

( )* * * */e e eRe U xρ µ= .  Using the Lees-Dorodnitsyn 

transformation,12 we solve the conical problem with 
boundary layer profiles for a flat plate.  Accordingly, 
all conical results presented hereafter can be adjusted 
to the flat plate boundary layer by dividing the pa-
rameters Re , α , β  and ω  by 3 .  All numerical 

results are for the case of two-dimensional mean 
flow.  To maintain consistency with the 2D problem 
analyzed in Ref. 2, we choose the following parame-
ter values:  5.6M = , 1219.5Re = , 0.7Pr = , 

1.4γ = , and stagnation temperature 0 470T K= . 
 
          Biorthogonal System of Eigenfunctions  
     It is possible to express a solution of the initial-
value problem as an expansion in the biorthogonal 
eigenfunction system { },ω ωA B .  The vector ωA  is 

a solution of the direct problem , and the vector ωB  
is a solution of the adjoint problem. 
     Solutions of the direct and adjoint problems be-
long to the discrete and    continuous spectrum.  The 
eigenfunction system { },ω ωA B  has an orthogonality 

relation given as 
 

( )10 ' 10 ' , '
0

, , dyω ω ω ω ω ω

∞
≡ =Γ∆∫H A B H A B     (6) 

 
where Γ  is a normalization constant. , 'ω ω∆  is a 

Kronecker delta if either ω  or 'ω  belong to the dis-
crete spectrum.  ( ), ' 'ω ω δ ω ω∆ = −  is a Dirac delta 

function if both ω  and 'ω  belong to the continuous 
spectrum. 
     It is possible to show that the inverse Laplace 
transform can be expressed as an expansion in the 
biorthogonal eigenfunction system7 
 

( )

0

( , ) ( )

( ) ( ) j
j

i t

iw k t
j

j

y t c y e

c k y e dk

ν
ν

ω
αβ ν αβω

ν

αβω

−

∞
−

= +

      

∑

∑ ∫

A A

A
        (7) 

 

where 
ν
∑  denotes a summation over the discrete 

spectrum and 
j

∑  denotes a summation over the 

continuous spectrum.  Using the Fourier transform of 
the initial disturbance, 0αβA , as well as the orthogo-

nality  relation (Eq. (6)), one can find the coefficients 
cν  and jc .  Further details regarding the biorthogo-

nal system of eigenfunctions can be found in Ref. 7. 
 

Receptivity to a Temperature Spot      
     As an example of a specific initial disturbance, we 
consider a temperature spot localized at a distance 0Y  
from the wall.  For the 3D initial-value problem, this 
disturbance will have the form 
 

( )0( , , ) ( ) ( )x y z x y Y zθ δ δ δ= − at 0t =       (8) 

 
The orthogonality condition given by Eq. (6) allows 
one to determine the weights of the modes generated 
by the temperature spot.  For Mode F and Mode S, 
the weight is given by 
 

( ) 10 0

10

,
,

,
c αβ ω

ω ω
α β =

H A B

H A B
               (9) 

 
where ( ),ω α β  corresponds to the eigenvalue for the 

mode of interest.  For a temperature spot of the form 
given by Eq. (8), one obtains from Eq. (9) the expres-
sion 
 

( ) ( ) ( ) ( ) ( )35 65
10 0 3 0 10 0 6 0

10
,

,

H Y Y H Y Y
c ω ω

ω ω
α β

+
=

B B

H A B
 

(10) 
 

with 10
ijH  denoting the ( ),i j  element of matrix 10H . 

     The denominator of Eqs. (9,10) is an arbitrary 
normalization constant.  In the following analysis, we 
have chosen to normalize the eigenfunction ωA  as 

maxu =  inner maximum of ( ) 1u y = .  With this 

normalization, c  is the amplitude of the maximum 
streamwise velocity component maxu  associated 
with the appropriate mode. 
     As a limiting case, as 0β → , one obtains the 
receptivity coefficient associated with the 2D initial-
value problem.2 
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Inverse Fourier Transform-2D 
     The 2D inverse Fourier transform is given by 
 

( ) ( ) ( )( ), i x tc y e dα ω αα α α
∞

−

−∞
∫ A           (11) 

 
As an example, we consider the streamwise velocity 
component, u , of the disturbance vector, A .  The 
transform we are therefore interested in is given as 
 

( ) ( ) ( )( ), i x tc u y e dα ω αα α α
∞

−

−∞
∫            (12) 

 
where the coefficient ( )c α  is, for this example, the 

amplitude of the maximum streamwise velocity com-
ponent maxu .  Eq. (12) is transformed using a sym-
metry argument.  Using the direct and adjoint matrix 
operator equations, when α  is replaced by α− , i.e. 
when α α→ − , it can be shown that ω ω→ , c c→  
and u u→ , where the overbar stands for complex 
conjugate.  Therefore, Eq. (12) can be rewritten as 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ){ }

0

0

0

,

,

,

2 Real ,

i x t

i x t

i x t

i x t

c u y e d

c u y e d

c u y e d

c u y e d

α ω α

α ω α

α ω α

α ω α

α α α

α α α

α α α

α α α

∞
−

−∞
∞

−

∞
− −

∞
−

=

      +

            =

∫

∫

∫

∫

    (13) 

 
In the computation, we ignore the factor of 2 .  For 
the purpose of analysis, we shall consider Mode F 
and Mode S separately. 

 
Mode F 
     Figure 2 shows the imaginary part of the eigen-
value iω  for Mode F.  Figure 3 shows the maximum 

streamwise velocity amplitude maxu  for Mode F, 
which is generated by α  components of the tempera-
ture spot located at varying normal distances 0Y  from 
the wall. 
     We numerically compute the integral given by Eq. 
(13) from 0.1α =  to 0.5α = .  We were unable to 
calculate the Mode F eigenvalues below 0.08α ≈  
(Fig. 2).  However, the input into the integral for 

0.0α =  to 0.1α =  is not significant since the recep-
tivity coefficient, maxu , is close to 0  for this range 
of α  (Fig. 3).   
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Fig. 2  Imaginary part of  eigenvalue for Mode F. 
 

 
Fig.  3  Contours of maxu  generated by α  com-

ponents of the temperature spot locate d at 0Y . 
 
     Fig. 3 also shows that the largest values of  maxu  
occur near 0.3α ≈ .  This fact, coupled with the fact 
that Mode F is everywhere decaying, suggests that 
there will not be much input into the integral for 

0.5α >  if a sufficiently large time, t , is chosen. 
     There is a synchronism between Mode F and the 
entropy and vorticity modes of the phase speed 1c = . 
As the discrete mode coalesces with the continuous 
spectrum from one side of the branch cut, it reappears 
on the other side at another point.  This leads to a 
jump in iω .   

     Figure 4 shows contours of iω  in the complex α  

plane.  One can see the jumps in iω  along a nearly 
vertical line.  Since these jumps are associated with a 
branch cut, as we integrate Eq. (13) from 0.1α =  to 

0.5α = , we must deform the path of integration 
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around the branch cut.  Figure 5 is a schematic of an 
integration path chosen to avoid the branch cut.   
 

 
Fig. 4  Contours of ωi  in the complex α  plane.     
 

 
Fig. 5  Schematic of an integration path around 
the branch cut. 
 
Due to analyticity of the function being integrated, 
the result should be independent of the path of inte-
gration. 
     Using 0 9.0Y ≈ , 50t =  and the  integration path, 
Path 1, Eq. (13) is integrated.  Using the letters found 
in Fig. 5, Path 1 is given explicitly as the following:  
At point A, 0.1α = .  At point B, 0.17α = .  At point 
C, 0.17 0.015iα = − .  At point D, 0.2 0.015iα = − .  
At point E, 0.2α = , and at point F, 0.5α = . 
     The result is shown in Figure 6 as contours of u  
in the x y−  plane.  To better illustrate the Mode F 
wave packet, Figure 7 shows a slice of Fig. 6 taken at 

2.02y = . 
     One can see that the wave packet shown in Fig. 7 
has a well defined periodic structure, with period of 
about 21 .  The wave number corresponding to this 
period is given as 2 /21 0.299π = .  At this short time, 
the main input into the integral is from the receptivity 
coefficient, and we expect the wave number that cor-

responds to the period of the wave packet to be near 
the value of  α  for which maxu  is a maximum.  In 

fact, for our choice of 0 8.9Y = , maxu  attains its 
largest value at 0.297α = , which compares favora-
bly with 0.299α = . 
 

 
Fig. 6  Contours of u  in the x y−  plane. 

      

 
Fig. 7  Streamwise velocity disturbance, u , at 

2.0207y =  for 50t = . 
 

 
Fig. 8  Streamwise velocity disturbance, u , at 

2.02y =  for 200t = . 
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To illustrate the decay of the wave packet in time, 
Eq. (13) is integrated again using Path 1 and  

0 8.9Y =  for 200t = .  Figure 8 shows the result 
taken at the slice 2.02y = .   
     When Fig. 8 is compared to Fig. 7, one sees that 
u  is an order of magnitude smaller for 200t =  than 
for 50t = .  Additionally, the wave packet is seen to 
have moved downstream with the increase in time. 
     To ensure that these results are independent of the 
choice of path of integration, the results shown for 

0 8.9Y =  at 50t =  using Path 1 are compared with 
results found using three other paths of integration.   
Using the letters found in Fig. 5, Paths 2,3 and 4 are 
given as follows:   
 
Path 2 - At point A, 0.1α = .  At point B, 0.15α = .  
At point C, 0.15 0.015iα = − .  At point D, 

0.2 0.015iα = − .  At point E, 0.2α = , and at point 
F, 0.5α = .   
 
Path 3 - At point A, 0.1α = .  At point B, 0.15α = .  
At point C, 0.15 0.015iα = − .  At point D, 

0.21 0.015iα = − .  At point E, 0.21α = , and at 
point F, 0.5α = .   
Path 4 - At point A, 0.1α = .  At point B, 0.17α = .  
At point C, 0.17 0.031iα = − .  At point D, 

0.2 0.031iα = − .  At point E, 0.2α = , and at point 
F, 0.5α = .   
 
To compare the results, Figure 9 shows the wave 
packet at the slice 2.02y =  for each choice of inte-
gration path. 
      

 
Fig. 9  Streamwise velocity disturbance, u , at 

2.02y =  for 50t =  for 4  paths of integration. 
 
     There is good agreement between the results ob-
tained using the four different integration paths.  
Since a portion of each path of integration passes 
through a region of the complex α  plane where 

0iα < , there is numerical error downstream of the 
wave packet.  This error is associated with growth 

from the i xe α  term in the integrand.  Since Path 3 
has a longer portion of its path in the negative com-
plex α  plane, this phenomena also explains why the 
Path 3 result differs slightly from the other three re-
sults. 
 
Mode S 
    Figure 10 shows the imaginary part of the eigen-
value iω  for Mode S.  Figure 11 shows the maximum 

streamwise velocity amplitude maxu  for Mode S, 
which is generated by α  components of the tempera-
ture spot located at varying normal distances 0Y  from 
the wall. 
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Fig. 10  Imaginary part of eigenvalue for Mode S. 
  

 
Fig.  11  Contours of maxu  generated by α  com-

ponents of the temperature spot located at 0Y . 
      
     We numerically compute the integral given by Eq. 
(13) from 0.1α =  to 0.5α = .  The greatest input 
into the integral will be from the region of 0.2α ≈  to 

0.3α ≈ .  It is in this region that the receptivity coef-
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ficient, maxu , is the highest, and it is also in this re-

gion where iω  attains its largest value. Beyond 
0.5α = , Mode S is decaying, so that for sufficiently 

large times, there will not be significant input into the 
integral for 0.5α > .    
     Unlike the Mode F case, there is no need to de-
form the path of integration to compute the Mode S 
inverse Fourier transform.  The result for 0 8.9Y =  at 

500t =  is shown in Figure 12 as contours of u  in 
the x y−  plane. 

 
Fig. 12  Contours of u  in the x y−  plane. 
 
     To better illustrate the Mode S wave packet, Fig-
ure 13 shows a slice of Fig. 12 taken at 2.02y = . 
 

 
Fig. 13  Streamwise velocity disturbance, u , at 

2.02y =  for 500t = . 
      
     The wave packet shown in Fig. 13 has a well de-
fined periodic structure, with period of about 24 .  
The wave number corresponding to this period is 
given as 2 /24 0.262π = .  The main input into the 
integral comes from the Gaussian shaped portion of 
the Mode S eigenvalue plot (Fig. 10).  The peak of 
the Gaussian occurs at 0.254α = , which compares 
favorably with 0.262α = . 

     Because the eigenvalue plot for Mode S contains a 
region where 0iω > , the Mode S wave packet, 
unlike the Mode F wave packet, will grow in time 
(and downstream).  Since this behavior is relevant to 
the transition process, it is useful to compare the 
Mode S computed inverse Fourier transform with an 
asymptotic approximation of the Fourier integral. 
     The development of two and three-dimensional 
wave packets comprised of spatially growing discrete 
modes for boundary layer flows (parallel and non-
parallel) has been considered previously by 
Gaster.13,14,15  In particular, Gaster used the method of 
steepest descent to find the asymptotic representation 
of integrals of the form given by Eq. (13).  Starting 
with Eq. (13), we have the following 
 

( ) ( ) ( )( )

( ) ( )
( )

,

,

i x t

x
it

t

c u y e d

c u y e d

α ω α

α ω α

α α α

α α α

−

 −  

=

      

∫

∫

         (14) 

 
Assuming that the saddle point lies near the point 

maxα , we approximate ( )ω α  as follows 

 

( ) ( )

( )

max max
max

2
2

max 2
max

1
2

ω
ω α ω α α

α

ω
α α

α

∂ = + − + ∂ 

 ∂
       −   ∂ 

      (15) 

 

where 
max

ω
α

∂ 
 ∂ 

 is real valued. 

To find the saddle point, spα , at a prescribed /x t , 

we let ( ) ( )/x tϕ α α ω α= −  and derive the following 

 

( )

sp max

2

sp max 2
max

0

x
t

ϕ ω
α α

ωα α
α

∂ ∂   = − −   ∂ ∂   

 ∂      − =  ∂ 

          (16) 

 
Solving for spα , one obtains 

 

max
sp max 2

2
max

x
t

ω
α

α α
ω

α

∂ − ∂ = +
 ∂
  ∂ 

              (17) 
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Equation (17) can be rewritten as 
 

max
sp max 2

2
max

x x

t

α α
ω

α

−
= +

 ∂
  ∂ 

               (18) 

 

where max
max

x t
ω
α

∂ =  ∂ 
. 

 
Equation (14) can now be rewritten as 
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

2
sp max sp

sp

sp

1
2

sp sp

sp sp
sp

sp sp 2

2
max

,

2
,

2,

it

L

it

it

c u y e d

c u y e
it

c u y e

it

ϕ α α α ϕ α

ϕ α

ϕ α

α α α

π
α α

ϕ α

πα α
ω

α

 ′′+ − 
  =

       − =
′′

            
 ∂
  ∂ 

∫

 

  (19) 
 
where L  is the contour of integration that has been 
deformed to pass through the saddle point. 
     After substitution of spα  into Eq. (19), we obtain 

the asymptotic representation of the original Fourier 
integral 
 

( ) ( )

( )

sp sp 2

2
max

2
max

max max2

2
max

2,

exp

2

c u y

it

i x x
i x i t

t

πα α
ω

α

α ω
ω

α

×
 ∂
  ∂ 

 
 
 −

      + − 
 ∂ 
    ∂  

   (20) 

 
Actually, the use of a 2nd order Taylor series expan-
sion of ( )aω  within the framework of the method of 

steepest descent is equivalent to Gaster’s13,14 Gaus-
sian model for a Fourier integral. 
     Using numerical results, the various quantities 
found in Eq. (20) can be determined.  They are 
 

max 0.254α = ,         max 0.2342 + 0.0039iω = , 
 

max
0.86

ω
α

∂  = ∂ 
 and   

 
2

2
max

-0.2034 - 3.6431i
ω

α

 ∂
=  ∂ 

. 

 
Additionally, ( ) ( ),c u yα α , the receptivity coeffi-

cient multiplied by the eigenfunction at the saddle 
point for the slice 2.02y =  is 0.00174-0.0011i . 
     These values can be used to compare the com-
puted inverse Fourier transform with the asymptotic 
approximation of the transform.  The computation 
gives the “exact” shape of the wave packet, while the 
asymptotic approximation is derived using a 2nd order 
Taylor series.  Though we expect good agreement 
between the two methods, especially for large times, 
there may be some diffe rences between the “exact” 
result found numerically and the “approximate” re-
sult found with the method of steepest descent.   
 

 
Fig. 14  Comparison of  computed integral with 
the asymptotic approximation for  500t = . 
 

 
Fig. 15  Comparison of  computed integral with 
the asymptotic approximation for  1000t = . 
 
     Figure 14 compares the wave packet found for 

0 8.9Y =  and 500t =  at the slice 2.02y =  with the  
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asymptotic approximation at  500t =  given by Eq. 
(20) using the values given above.  Figures 15 and 16 
show similar comparisons for  1000t =  and 1500t =  
respectively.   
 

 
Fig. 16  Comparison of  computed integral with 
the asymptotic approximation for  1500t = . 
 
     One can see that the asymptotic representation 
provides a good approximation to the computation at 

500t = , and that as time progresses, the two wave 
packets have even better agreement with each other.  
One can also see that as time increases, the wave 
packet spreads out as it moves downstream.  Fur-
thermore, the amplitude of the perturbation increases 
with time.   
 

Inverse Fourier Transform-3D 
     For the streamwise velocity disturbance, u , the 
3D inverse Fourier transform is now given by 
 

( ) ( ) ( )( ),, , , i x z tc u y e d dα β ω α βα β α β α β
∞ ∞

+ −

−∞ −∞

 ∫ ∫  

(21) 
 
For a prescribed β , Eq. (21) becomes 
 

( ) ( ) ( )( ),, , , i x ti ze c u y e dα ω α ββ α β α β α
∞

−

−∞

 ∫  (22) 

 
As for the 2D case, the integral of Eq. (22) can be 
transformed using a symmetry argument to an inte-
gral over the positive α  half-plane.  As before, for 
the purpose of computation, we ignore the  factor of 
2 .  The asymptotic approximation of the 3D inverse 
Fourier transform for prescribed β  is  
 
 

 

( ) ( ) ( )

( )

sp sp 2

2
max

2
max

max max2

2
max

2, , , exp

exp

2

c u y i z

it

i x x
i x i t

t

πα β α β β
ω

α

α ω
ω

α

×
 ∂
  ∂ 

 
 
 −

      + − 
 ∂ 
    ∂  

  

(23) 
 
Mode S 
Figure 17 shows the imaginary part of the eigenvalue 

iω  for Mode S for 0.1001β = .  Using numerical 
results, the various quantities found in Eq. (23) can 
be determined.  They are 
 

max 0.259α = ,     max 0.2396 + 0.0030iω = ,      
 

max
0.88

ω
α

∂  = ∂ 
 and 

 
2

2
max

0.1056 - 3.4483i
ω

α

 ∂
=  ∂ 

. 

 
Additionally, ( ) ( ), , ,c u yα β α β , the receptivity co-

efficient multiplied by the eigenfunction at the saddle  
 
point for the slice 2.02y =  is 0.00159-0.00126i .   
 

0.0 0.1 0.2 0.3 0.4 0.5
-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

ω
i

α

 
Fig. 17  Imaginary part of eigenvalue for Mode S 
for 0.1001β = . 
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Figure 18 shows for Mode S the maximum stream-
wise velocity amplitude maxu  multiplied by the 
value of the eigenfunction at 2.02y = , which is gen-
erated by α  and β  components of the temperature 

spot located at the distance 0 8.9Y =  from the wall. 
 

 
Fig.  18  Contours of ( ),c uα β  at 2.02y =  gener-

ated by α  and β  components of a temperature 

spot located at =0 8.9Y . 
 
We numerically compute the inverse Fourier trans-
form from 0.1α =  to 0.5α =  with 0.1001β =  and 

0z = .  Even though 0iω >  for 0.1α < , the recep-
tivity coefficient (Fig. 18) is near 0  in this region.  
Once again, the greatest input into the integral will be 
from the region of 0.2α ≈  to 0.3α ≈ .  It is in this 
region that the receptivity coefficient, maxu , is the 

highest, and it is also in this region where iω  attains 
its largest value. Beyond 0.5α = , Mode S is decay-
ing, so that for sufficiently large times, there will not 
be significant input into the integral for 0.5α > .    
      

 
Fig. 19  Comparison of  computed integral with 
the asymptotic approximation for 0.1001β = , 

0z =  and 1000t = . 

     Figure 19 compares the wave packet found for  
0.1001β = , 0z = , 0 8.9Y =  and 1000t =  at the 

slice 2.02y =  with the asymptotic approximation at  
1000t =  given by Eq. (23).   

     As another example, Figure 20 shows the imagi-
nary part of the eigenvalue iω  for Mode S for 

0.1401β = .   
 

0.0 0.1 0.2 0.3 0.4 0.5
-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

ω
i

α

 
Fig. 20  Imaginary part of eigenvalue for Mode S 
for 0.1401β = . 
 
      

 
Fig. 21  Comparison of  computed integral with 
the asymptotic approximation for 0.1401β = , 

0z =  and 1000t = . 
 
Using numerical results, the following quantities are 
found 
 

max 0.265α = ,     max 0.2446 + 0.0021iω = ,      
 

max
0.90

ω
α

∂  = ∂ 
 and 
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2

2
max

-0.2245 - 3.1321i
ω

α

 ∂
=  ∂ 

. 

 
( ) ( ), , ,c u yα β α β  at the saddle point for the slice 

2.02y =  is 0.00162-0.00135i .   
 
     Figure 21 compares the wave packet found for  

0.1401β = , 0z = , 0 8.9Y =  and 1000t =  at the 
slice 2.02y =  with the asymptotic approximation at  

1000t = . 
 

Conclusions 
     In this paper, we used the previously solved 2D 
and 3D initial-value problems along with features of 
the spectrum for one case of parameters to study the 
evolution of wave packets for two discrete modes, 
Mode S and Mode F. 
     Given the specific disturbance of an initial tem-
perature spot, we computed the 2D inverse Fourier 
transform for both Mode F and Mode S.  The results 
for Mode S were compared with the asymptotic ap-
proximation of the Fourier integral.  The 3D inverse 
Fourier transform was also computed for Mode S for 
prescribed values of the spanwise wave number β .  
The results lead to the following conclusions: 
     1) Due to the synchronism between Mode F and 
entropy/vorticity waves, the path of integration must 
be deformed around the branch cut associated with 
this synchronism.  Since the integrand is analytic, the 
choice of the integration path should not affect the 
result, and in fact, the numerical results for four 
choices of integration path agree very well. 
     2) The asymptotic approximation found using the 
method of steepest descent provides very good 
agreement with the computed inverse Fourier trans-
form for sufficiently large time.  This is true both for 
the 2D Fourier integral and the 3D Fourier integral 
with prescribed β . 
     Future work will include the computation of the 
3D inverse Fourier transform for a range of β . 
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