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Abstract We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR)
epidemiological model with a contact rate that fluctuates seasonally. Through the use
of a nonlinear, stochastic projection, we are able to analytically determine the lower
dimensional manifold on which the deterministic and stochastic dynamics correctly
interact. Our method produces a low dimensional stochastic model that captures the
same timing of disease outbreak and the same amplitude and phase of recurrent be-
havior seen in the high dimensional model. Given seasonal epidemic data consisting
of the number of infectious individuals, our method enables a data-based model pre-
diction of the number of unobserved exposed individuals over very long times.

Keywords Epidemics with seasonality and noise · Model reduction

1 Introduction

As a dynamical process in epidemics, noise increasingly plays an important role
when using models to understand and predict disease outbreaks. Stochastic ef-
fects figure prominently in finite populations, which can range from ecological dy-
namics (Marion et al. 2000) to childhood epidemics in cities (Rohani et al. 2002;
Nguyen and Rohani 2008a). For populations with seasonal forcing, noise comes into
play in the prediction of large outbreaks (Rand and Wilson 1991; Billings et al. 2002;
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Stone et al. 2007). External random perturbations, such as those arising from ran-
dom migrations (Alonso et al. 2007), change the probabilistic prediction of epidemic
outbreak amplitudes as well as their control (Schwartz et al. 2004).

Epidemic stochasticity may arise from several sources, such as internal inter-
actions due to random contacts in finite well-mixed populations (Nåsell 1999;
Doering et al. 2005), as well as contacts on structured contact networks (Shaw and
Schwartz 2008). On the other hand, it may arise from random external fluctuations,
such as immigration perturbations (Anderson and May 1991; Alonso et al. 2007). In
many cases, whether noise arises externally or internally, it may have far ranging ef-
fects on outbreak predictability. For example, noise impacts predictability in climate
and disease (Kelly-Hope and Thomson 2008), produces random-looking outbreaks
from its interaction with mass action terms (Nguyen and Rohani 2008b), and ampli-
fies the peaks of epidemics due to its interaction with resonant frequencies (Alonso
et al. 2007). Other areas of noise research have been postulated as the source of chaos
in epidemics (Rand and Wilson 1991; Billings and Schwartz 2002), whereby noise
explicitly interacts with the underlying topology of the epidemics model. As a direct
consequence of its topological interaction, random chaotic-like switching may occur
between small amplitude and large outbreaks when including the effects of stochas-
ticity (Billings et al. 2002).

To connect with data, time series analysis from spatio-temporal cases has been
done to generate parameters for use in epidemic models. Tools from nonlinear time
series analysis of measles data (Schaffer et al. 1993; Blarer and Doebeli 1999) have
pointed to the important realization that any mathematical models might need to cap-
ture chaotic behavior, which is deterministic and predictable only in the short term.
As a result, time series data analysis has centered on the assumption that a determin-
istic process dominates the time series, but quantifying determinism from the statis-
tics may be inconclusive. In Tidd et al. (1993), analysis specifically points out that
complex, or chaotic behavior may be detected, even when it is not deterministic. For
example, sensitive dependence on initial conditions in short, noisy, nonchaotic time
series, such as epidemic data, may be indicated by positive Lyapunov exponents.

Another time series analysis method, which also includes noise is that of Time-
series Susceptible-Infected-Recovered (TSIR) modeling (Bjornstad et al. 2002).
Here, the authors do local fits of time-series data from England and Wales to get
measures of local reproductive rates of infection. The main assumption is that in the
prevaccine years, all newborns introduced into the population as susceptible individu-
als become infected. However, as constructed the model lacks predictive power since
the parameter fits, which include noise parameters, are local in time. It also excludes
any latency period of infection, since it only considers models of SIR type.

Connections of data with full models which are higher dimensional are difficult if
one includes other relevant epidemiological parameters and realistic noise. Coupled
patch models of cities have limited data time series when compared to the large sim-
ulation model dimension. Such limited data sets imply the need for accurate lower
dimensional models to reduce parameter unknowns. Latency of infection, which in-
troduces a series of exposed classes approximating mean delay times, is one example
which generates high dimensional models, but is omitted in modeling diseases used
in the TSIR approach. However, it is known rigorously that the dynamics in higher
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dimensional deterministic models relaxes asymptotically onto lower dimensional hy-
persurfaces (Schwartz and Smith 1983; Shaw et al. 2007). The dynamics in these
reductions are purely deterministic, and rely on nonlinear center manifold reduction
methods. The advantage in doing center manifold reductions is that if one can only
observe certain components of a disease, then it is possible to explicitly construct a
function which relates the unobserved components (such as latency, or asymptomatic
infections), to those explicitly measured, or observed. The current state-of-the-art,
however, now shows stochastic model reduction must be done correctly in order to
connect with observed data (Roberts 2008). When examining models based on ob-
served data, it will improve prediction by examining full stochastic models which
include all epidemiological factors, and then reduce them properly to lower dimen-
sions, whereby noise is projected properly.

The purpose of this paper is to examine a method of nonlinear, stochastic projec-
tion so that the deterministic and stochastic dynamics interact correctly on the lower-
dimensional manifold and predict correctly the outbreak dynamics when compared
to the full system when fitted to data. In a previous paper (Forgoston et al. 2009),
we showed how noise affects the timing of outbreaks for a time independent system.
Therefore, it was concluded that it is essential to produce a low-dimensional system
which captures the correct timing of the outbreaks as well as the amplitude and phase
of any recurrent behavior for any given measured realization of an outbreak.

For stochastic model reduction, there exist several potential methods for gen-
eral problems. For systems with certain spectral requirements, the existence of a
stochastic center manifold was proven in Boxler (1989). Nonrigorous stochastic nor-
mal form analysis (which leads to the stochastic center manifold) was performed in
Knobloch and Wiesenfeld (1983), Coullet et al. (1985), Namachchivaya (1990), Na-
machchivaya and Lin (1991), as well as others (Arnold 1998; Arnold and Imkeller
1998). In Roberts (2008), the construction of the stochastic normal form coordinate
transform is transparent, so we used this method to derive the reduced stochastic cen-
ter manifold equation when there is no seasonal forcing using standard parameters
(Forgoston et al. 2009).

Here, we take a different approach, and consider the data to fit a predictive model
of SEIR type, and then perform stochastic reduction in a time dependent system.
Rather than perform local temporal fits of a model to data, the data is fit over a long
period of time compared to the infectious period. Then, given the parameters and
noise, we explicitly construct the stochastic manifold. The dynamics which lives on
the manifold allows us to predict the unobserved exposed, yet not infectious, individ-
uals explicitly.

2 SEIR Model

We begin by describing a stochastic version of the SEIR model found in Schwartz and
Smith (1983). It is assumed that a given population can be divided into four classes,
each of which evolves in time. The classes are defined as follows:

1. The class of susceptible individuals is denoted by s(t). Each susceptible individual
may contract the disease from an infectious individual.
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2. The class of exposed individuals is denoted by e(t). Each exposed individual has
been infected by the disease, but is not yet infectious.

3. The class of infectious individuals is denoted by i(t). Each infectious individual
is capable of transmitting the disease to a susceptible individual.

4. The class of recovered individuals is denoted by r(t). Each recovered individual
is immune to the disease.

We also assume that the population size, denoted by N , is constant so that s(t) +
e(t) + i(t) + r(t) = N . Denoting S(t) = s(t)/N , E(t) = e(t)/N , I (t) = i(t)/N ,
and R(t) = r(t)/N , then the population class variables S(t), E(t), I (t), and R(t)

represent fractions of the total population and S(t) + E(t) + I (t) + R(t) = 1. In
terms of these new variables, the governing equations of our stochastic SEIR model
are given as

Ṡ(t) = μ − β(t)I (t)S(t) − μS(t), (1a)

Ė(t) = β(t)I (t)S(t) − (α + μ)E(t), (1b)

İ (t) = αE(t) − (γ + μ)I (t) + σI (t)φ(t), (1c)

Ṙ(t) = γ I (t) − μR(t), (1d)

where σ is the standard deviation of the noise intensity D = σ 2/2, and φ is a stochas-
tic white noise term that is characterized by the following correlation functions:

〈
φ(t)

〉 = 0, (2)
〈
φ(t)φ

(
t ′
)〉 = δ

(
t − t ′

)
. (3)

We only consider multiplicative noise in the infectives since that is the one quantity
that is measurable as a function of cases. However, since not every person who con-
tracts a disease will be treated by a doctor, and since some doctors may neglect to
consistently file reports with the monitoring agencies, the data is inherently noisy.
In addition, restricting the noise to observations renders the problem easier to un-
derstand analytically.1 Equations (1a)–(1d) and all of the other stochastic differential
equations that follow are interpreted in the Stratonovich sense.

In Eqs. (1a)–(1d), the birth and death rate are described by μ, the rate of infection
is described by α, and the rate of recovery is described by γ . Additionally, the contact
rate β(t) fluctuates seasonally, and we have chosen to represent β with the following
two-harmonic sinusoidal forcing function:

β(t) = β0
[
1 + β1 cos (2πt + ζ1) + β2 cos (2πtω + ζ2)

]
. (4)

It should be noted that if one neglects the σI (t)φ(t) stochastic term, then the de-
terministic form of Eqs. (1a)–(1d) is such that S + E + I + R = 1. In the stochastic
problem, the four components will not necessarily sum to unity due to fluctuations

1We note the fact that while the inclusion of noise terms on other components makes the analysis more
difficult, it will not affect the predictions as long as we stay away from bifurcation points.
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in the total population. But since the noise has zero mean, on average the total pop-
ulation will remain close to unity. This fact, along with the fact that R is decoupled
from Eqs. (1a)–(1c), allows us to assume that the dynamics are described sufficiently
by Eqs. (1a)–(1c).

3 Deterministic Model Reduction

We will reduce the dimension of the system given by Eqs. (1a)–(1c) using determin-
istic center manifold theory. The analysis begins by neglecting the σI (t)φ(t) term
and considering the autonomous SEIR model in the absence of periodic drive so that
β1 = β2 = 0. There are two steady states of the deterministic system. The first steady
state corresponds to a disease-free, or extinct, equilibrium state and is given as

(Se,Ee, Ie) = (1,0,0). (5)

The second steady state corresponds to an endemic equilibrium state and is given as

(S0,E0, I0) =
(

1

R0
,
(γ + μ)

α
I0,

μ

β0
(R0 − 1)

)
, (6)

where

R0 = αβ0

(γ + μ)(α + μ)
. (7)

Biologically, R0 is interpreted as the basic reproductive rate and gives the number of
secondary cases produced by a lone infectious individual in a population of suscep-
tible individuals during one infectious period. From here on, we assume that R0 > 1
so that an endemic equilibrium always exists.

A general nonlinear system may be transformed so that the system’s linear part
has a block diagonal form consisting of three matrix blocks. The first matrix block
will possess eigenvalues with positive real part; the second matrix block will possess
eigenvalues with negative real part; and the third matrix block will possess eigenval-
ues with zero real part. These three matrix blocks are respectively associated with
the unstable eigenspace, the stable eigenspace, and the center eigenspace. If there are
no eigenvalues with positive real part, then the orbits will rapidly decay to the center
eigenspace.

Equations (1a)–(1c) cannot be written in a block diagonal form with one matrix
block possessing eigenvalues with negative real part and the other matrix block pos-
sessing eigenvalues with zero real part. Even though it is possible to construct a center
manifold from a system not in separated block form (Chicone and Latushkin 1997),
it is much easier to apply the center manifold theory to a system with separated
stable and center directions. Therefore, we transform the original system given by
Eqs. (1a)–(1c) to a new system of equations that will have the eigenvalue structure
that is needed to apply center manifold theory. The theory allows one to find an in-
variant center manifold that passes through a fixed point and to which one can restrict
the new transformed system.
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3.1 Transformation of the SEIR Model

To ease the analysis, we define a new set of variables, S̄, Ē, and Ī , as S̄(t) = S(t)−S0,
Ē(t) = E(t) − E0, and Ī (t) = I (t) − I0. These new variables are substituted into
Eqs. (1a)–(1c).

Then, treating μ as a small parameter, we rescale time by letting t = μτ . We may
then introduce the following rescaled parameters: α = α0/μ and γ = γ0/μ, where
α0 and γ0 are O(1). The inclusion of the parameter μ as a new state variable means
that the terms in our rescaled system which contain μ are now nonlinear terms. Fur-
thermore, the system is augmented with the auxiliary equation dμ

dτ
= 0. The addition

of this auxiliary equation contributes an extra simple zero eigenvalue to the system
and adds one new center direction that has trivial dynamics. The shifted and rescaled,
augmented system of equations is given as follows:

dS̄

dτ
= −β(t)μĪ S̄ − β(t)(α0 + μ2)(γ0 + μ2)

α0β0
Ī

−
[

α0μ
3β(t)

(α0 + μ2)(γ0 + μ2)
+ μ2 − μ2β(t)

β0

]
S̄

+
[
μ2 − μ2β(t)

β0
− μ(α0 + μ2)(γ0 + μ2)

α0β0
+ μβ(t)(α0 + μ2)(γ0 + μ2)

α0β
2
0

]
,

(8a)

dĒ

dτ
= β(t)μĪ S̄ + β(t)(α0 + μ2)(γ0 + μ2)

α0β0
Ī

+ μ2β(t)[α0β0μ − (α0 + μ2)(γ0 + μ2)]
β0(α0 + μ2)(γ0 + μ2)

S̄

− (
α0 + μ2)Ē + μ(α0 + μ2)(γ0 + μ2)(R0 − 1)

α0β
2
0

(
β(t) − β0

)
, (8b)

dĪ

dτ
= α0Ē − (

γ0 + μ2)Ī , (8c)

dμ

dτ
= 0, (8d)

where the endemic fixed point is now located at the origin.
The transformed system given by Eqs. (8a)–(8d) is a nonautonomous system due

to the β(t) term. We generate the corresponding autonomous system by replacing the
cosine terms in Eq. (4) as follows:

x1 = x̄1 = cos (2πt + ζ1), (9a)

x2 = x̄2 = cos (2πωt + ζ2). (9b)
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The autonomous system consists of Eqs. (8a)–(8d) plus the following four additional
equations:

dx̄1

dτ
= μx̄1 − 2πμx̄3 − μx̄1

(
x̄2

3 + x̄2
1

)
, (10a)

dx̄2

dτ
= μx̄2 − 2πωμx̄4 − μx̄2

(
x̄2

2 + x̄2
4

)
, (10b)

dx̄3

dτ
= μx̄3 + 2πμx̄1 − μx̄3

(
x̄2

3 + x̄2
1

)
, (10c)

dx̄4

dτ
= μx̄4 + 2πωμx̄2 − μx̄4

(
x̄2

2 + x̄2
4

)
, (10d)

where the specific form of the right-hand side of Eqs. (10a)–(10d) corresponds to a
limit cycle.

The Jacobian of Eqs. (8a)–(8d) and Eqs. (10a)–(10d) is computed to zeroth-order
in μ and is evaluated at the origin. Ignoring the μ and x̄i components, the Jaco-
bian has only two linearly independent eigenvectors. Therefore, the Jacobian is not
diagonalizable. However, it is possible to transform Eqs. (8a)–(8c) to a block diago-
nal form with a separated eigenvalue structure. As mentioned previously, this block
structure makes the center manifold analysis easier. We use a transformation matrix,
P, consisting of the two linearly independent eigenvectors of the Jacobian along with
a third vector chosen to be linearly independent. There are many choices for this
third vector; our choice is predicated on keeping the vector as simple as possible.
This transformation matrix is given as follows:

P =
⎡

⎢
⎣

1 1 0
−α0+γ0

γ0
0 0

α0+γ0
γ0

0 1

⎤

⎥
⎦ . (11)

Using the fact that (S̄, Ē, Ī )T = P · (U,V,W)T , then the transformation matrix
leads to the following definition of new variables, U , V , and W :

U = −γ0

α0 + γ0
Ē, (12a)

V = S̄ + γ0

α0 + γ0
Ē, (12b)

W = Ī + Ē. (12c)

The application of the transformation matrix to Eqs. (8a)–(8c) leads to the trans-
formed evolution equations

dU

dτ
= F1(U,V,W,μ), (13a)

dV

dτ
= F2(U,V,W,μ), (13b)
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dW

dτ
= F3(U,V,W,μ), (13c)

dμ

dτ
= 0, (13d)

where F1, F2, and F3 are complicated expressions given in Appendix A.

3.2 Center Manifold Analysis

As we did previously, Eqs. (13a)–(13d) may be written in autonomous form by re-
placing the cosine terms in β(t) with Eqs. (9a)–(9b) and expanding the system to
include Eqs. (10a)–(10d). The Jacobian of Eqs. (13a)–(13d) and Eqs. (10a)–(10d) to
zeroth-order in μ and evaluated at the origin is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−(α0 + γ0) 0 − γ 2
0

(α0+γ0)
0 0 0 0 0

0 0 − α0γ0
(α0+γ0)

0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (14)

which shows that Eqs. (13a)–(13d) and Eqs. (10a)–(10d) may be rewritten in the form

dx
dτ

= Ax + f(x,y,μ), (15)

dy
dτ

= By + g(x,y,μ), (16)

dμ

dτ
= dxi

dτ
= 0, (17)

where x = (U), y = (V ,W), A is a constant matrix with eigenvalues that have nega-
tive real parts, B is a constant matrix with eigenvalues that have zero real parts, and f
and g are nonlinear functions in x, y and μ. In particular,

A = [−(α0 + γ0)
]
, B =

[
0 − α0γ0

(α0+γ0)

0 0

]
. (18)

Therefore, this new system of equations which is an exact transformation of
Eqs. (1a)–(1c) will rapidly collapse onto a lower-dimensional manifold given by cen-
ter manifold theory (Carr 1981; Chicone and Latushkin 1997; Duan et al. 2003).
Furthermore, since x is associated with A and y is associated with B, we know that
the center manifold is given by

U = h(V,W,μ,xi), (19)

where h is an unknown function.
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Substitution of Eq. (19) into Eq. (13a) leads to the following center manifold con-
dition:

∂h

∂V

dV

dτ
+ ∂h

∂W

dW

dτ

= μγ0(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]
β2

0α0(α0 + γ0)

+
(

−α0 − μ2 − (α0 + μ2)(γ0 + μ2)β(t)

β0α0
+ μ2γ0β(t)

β0(α0 + γ0)

− β(t)μ3γ0α0

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
h

+
(

− β(t)μ3γ0α0

(α0 + μ2)(γ0 + μ2)(α0 + γ0)
+ μ2γ0β(t)

β0(α0 + γ0)

)
V

− γ0β(t)(γ0 + μ2)(α0 + μ2)W

α0(α0 + γ0)β0

− γ0β(t)μWh

α0 + γ0
− β(t)μhV − γ0β(t)μV W

α0 + γ0
− β(t)μh2. (20)

In general, it is not possible to solve the center manifold condition for the unknown
function, h(V,W,μ,xi). Therefore, a Taylor series expansion of h(V,W,μ,xi) in
V , W , μ, and xi is substituted into the center manifold equation. The unknown coef-
ficients are determined by equating terms of the same order, and the center manifold
equation is found to be

U = − γ 2
0

(α0 + γ0)2
W + O

(
ε3), (21)

where ε = |(V ,W,μ)| so that ε provides a count of the number of V , W , and μ

factors in any one term.
Substitution of the center manifold equation (Eq. (21)) into Eqs. (13b) and (13c)

leads to the reduced system of evolution equations that describes the dynamics on the
center manifold. One can solve this reduced system of equation for V and W , and
then use Eq. (21) to find U . In order to find the original S, E, and I variables, one
can use the following relations between the transformed variables U , V , and W and
the original S, E, and I variables:

S = U + V + (γ + μ)(α + μ)

αβ0
, (22a)

E = − (α + γ )

γ
U + (γ + μ)μ

αβ0
(R0 − 1), (22b)

I = (α + γ )

γ
U + W + μ

β0
(R0 − 1). (22c)
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4 Stochastic Model Reduction

Having found the deterministic center manifold equation, we now return to the
stochastic SEIR system given by Eqs. (1a)–(1c). We transform the stochastic SEIR
system using the same procedure as for the deterministic system described in the
previous section. As a result, we find the noise to first order in μ is independent of
the parametric drive β(t), as evidenced in Eqs. (25a)–(25c). The only difference is
the effect of the transformation on the stochastic term. The original stochastic system
contains one multiplicative noise term in one equation (Eq. (1c)). The new trans-
formed stochastic system contains a linear combination of two multiplicative and
one additive noise terms.

In general, if there are stochastic terms associated with each of the equations which
comprise the original system, then the transformed system will contain multiple ad-
ditive and multiplicative noise terms. In this case, all of the additive noise terms in
each equation can be considered as a new additive noise term with a variance differ-
ent from the original noise process. In this situation, previous work (Forgoston et al.
2009) has shown that one should use a normal form coordinate transform reduc-
tion method to properly project the noise and dynamics onto the lower-dimensional
manifold. Reference (Forgoston et al. 2009) outlines a general theory that compares
two methods to perform a stochastic model reduction: (i) deterministic center mani-
fold method and (ii) stochastic normal form coordinate transform method. When the
stochastic normal form coordinate transform reveals noise terms at low order, then
the deterministic center manifold reduction cannot be applied, since the deterministic
reduction ignores the important noise terms, resulting in imperfect stochastic projec-
tion. On the other hand, if the stochastic normal form coordinate transform yields
noise at sufficiently high order, stochastic contributions are negligible and, therefore,
a deterministic reduction may be used to perform the projection onto the low dimen-
sional manifold. It should be pointed out that even when one uses the deterministic
center manifold result, the result remains a stochastic one.

For this model, since the transformation yields only one additive noise term which
cannot be combined with the multiplicative terms to consider a new noise process
with a different variance, we can use the deterministic center manifold result to re-
duce the stochastic model. Additionally, we have explicitly computed the normal
form coordinate transformation. The result shows that the stochastic terms occur at
high order, thus justifying our use of the deterministic center manifold for this partic-
ular model. Substituting the deterministic center manifold equation given by Eq. (21)
into the full system of stochastic, transformed equations gives the reduced stochas-
tic model that describes the dynamics on the center manifold. Since they are com-
plicated, the specific forms of the complete, stochastic transformed system and its
associated reduced, stochastic system are provided in Appendix B.

5 Results

We numerically integrate the complete, stochastic system of transformed equations
of the SEIR model along with the reduced system of equations of the SEIR model
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Fig. 1 Time series of the fraction of the population that is infected with a disease, I . The time series
are found using the complete, stochastic system of transformed equations of the SEIR model (red, solid
line) as well as the reduced, stochastic system of equations (blue, dashed line). The parameter values
used in the simulation are given as (a) μ = 0.02 (year)−1, α = 1/0.0279 (year)−1, γ = 1/0.01 (year)−1,
β0 = 1575.0 (year)−1, β1 = 0.1, β2 = ζ1 = ζ2 = ω = 0, and σ = 2.0; (b) the same as in (a) except now
μ = 0.03 (year)−1; (c) the same as in (a) except now μ = 0.03 (year)−1, β1 = 0.15, and σ = 5.0; (d) the
same as in (a) except now μ = 0.04 (year)−1 (Color figure online)

using a stochastic fourth-order Runge–Kutta integrator with a constant time step size.
The complete system is solved for U , V , and W , while the reduced system is solved
for V and W . In this latter case, U is estimated using the center manifold equation
given by Eq. (21). After the values of U , V , and W are known, the values of S, E,
and I are computed using the transformations given by Eqs. (22a)–(22c).

Figures 1(a)–(d) compare two time series of the fraction of the population that is
infected with a disease, I . The first time series was computed using the complete,
stochastic system of transformed equations, while the second time series was com-
puted using the reduced, stochastic system of equations. In Fig. 1(a), the follow-
ing parameter values are used in the computation: μ = 0.02 (year)−1, α = 1/0.0279
(year)−1, γ = 1/0.01 (year)−1, β0 = 1575.0 (year)−1, β1 = 0.1, β2 = ζ1 = ζ2 =
ω = 0, and σ = 2.0. These disease parameters correspond to typical measles values
(Schwartz and Smith 1983; Billings and Schwartz 2002). There is excellent agree-
ment between the two solutions shown in Fig. 1(a). The initial disease outbreak is
correctly captured by the reduced model. Furthermore, the reduced model correctly
predicts outbreaks for a time scale on the order of decades.

Additionally, the solution found using the reduced, stochastic system agrees very
well with the solution found using the complete, stochastic system for a wide range
of parameter values. The agreement can be seen in Figs. 1(b)–(d). By changing μ, β1,
and σ , one can obtain different frequency and amplitude structure of the solutions.
Regardless, the reduced system still properly captures the initial disease outbreak as
well as the recurring outbreaks.
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Fig. 2 Time series of the fraction of the population that is infected with a disease, I . One time series
is given by data (Fine and Clarkson 1982a) from 60 cities in England and Wales over the time span of
1953–1966 (black, solid line), while the other time series is computed using the reduced, stochastic system
of equations (red, dashed line) for σ = 0.0 (deterministic). The cross-correlation between the two time
series is 0.817. The parameter values used in the simulation are given as follows: μ = 0.0299 (year)−1,
α = 30.0 (year)−1, γ = 90.0 (year)−1, β0 = 1329.345 (year)−1, β1 = 0.1, β2 = 0.05, ζ1 = −0.2128,
ζ2 = −0.2554, and ω = 0.521 (Color figure online)

6 Comparison with Data

Measles have been registered on a weekly basis via mandatory notification in the UK
(Fine and Clarkson 1982a), with a reporting rate in the prevaccination era better than
50 % (Clarkson and Fine 1985). We use existing measles data (Fine and Clarkson
1982b) that consists of the number of infectious individuals from 60 cities in England
and Wales over the 14-year time span of 1953–1966. The data from all of these cities
is aggregated so that the total population is 14,602,896. Figure 2 shows the time
series of the aggregate data as the fraction of the population that is infected with
the disease. Fitting the data with the deterministic version of Eqs. (1a)–(1c) yields
the following disease parameter values: μ = 0.0299 (year)−1, α = 30.0 (year)−1,
γ = 90.0 (year)−1, β0 = 1329.345 (year)−1, β1 = 0.1, β2 = 0.05, ζ1 = −0.2128,
ζ2 = −0.2554, and ω = 0.521. Using these parameter values, the reduced system of
equations is solved with σ = 0.0 (deterministic case), and the resulting time series is
also shown in Fig. 2.

One can see that the agreement between the two time series is quite good. In
particular, the reduced system accurately captures the timing of each of the major
outbreaks. We also have computed the cross-correlation of the two time series shown
in Fig. 2 to be approximately 0.817. The cross-correlation measures the similarity
between the two time series. If the time series were identical, the cross-correlation
would be equal to 1.0. Although the time series of Fig. 2 are not identical, their high
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Fig. 3 Time series of the fraction of the population that is infected with a disease, I . One time series
is given by data (Fine and Clarkson 1982a) (black, solid line), while the other time series is an average
solution computed using the reduced, stochastic system of equations (red, dashed line) using 25 realiza-
tion of noise with intensity (a) σ = 2.0, and (b) σ = 10.0. The range of I within one standard devia-
tion of the mean also is denoted (green, dashed-dotted line). The cross-correlation between the data time
series and the average time series from the reduced model in (a) is 0.810, while the cross-correlation
between the two time series in (b) is 0.655. The parameter values used in the simulation are given as fol-
lows: μ = 0.0299 (year)−1, α = 30.0 (year)−1, γ = 90.0 (year)−1, β0 = 1329.345 (year)−1, β1 = 0.1,
β2 = 0.05, ζ1 = −0.2128, ζ2 = −0.2554, and ω = 0.521 (Color figure online)

cross-correlation value quantitatively suggests good agreement between the measured
data and the computed time series.

The solution that is computed using the reduced, stochastic system is very ro-
bust to noise. The standard deviation of the noise intensity σ must be fairly large to
significantly affect the accuracy of the computed solution. Figure 3(a) compares the
data time series with the average time series computed using the reduced, stochastic
model with 25 realizations of noise with intensity σ = 2.0. Figure 3(b) is similar,
except that σ = 10.0 was used for the reduced model computation. Also shown in
Figs. 3(a)–(b) is the range of infectives that fall within one standard deviation of the
average solution.

By comparing Fig. 2 with Fig. 3(a), one can see that the noise has not had a
great effect on the mean solution found using the reduced model. In fact, the cross-
correlation between the two time series of Fig. 3(a) is approximately 0.810, which
is very near the deterministic cross-correlation value. Beyond σ = 2.0, the noise has
a significant degrading effect on the reduced model solution. Figure 3(b) shows that
the overall agreement between the two time series is still relatively good. However,
by comparing Fig. 3(a) with Fig. 3(b), one can see that the larger noise has led to sig-
nificant differences between the two reduced model solutions. The cross-correlation
value is 0.655, which is much lower than the cross-correlation found for lower values
of σ .
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Fig. 4 Cross-correlation
between the data time series and
the time series which is
computed using the reduced,
stochastic system of equations
for noise intensities ranging
from σ = 0.1 to σ = 35.0. The
cross-correlation for σ = 0.0
(deterministic) is 0.817 (data
point is not shown). For each
value of σ , the data point
represents the average of
individual cross-correlations
computed using 25 realizations
of the noise

To obtain a comprehensive idea of the effect of the noise, we have computed the
cross-correlation between the data time series and the time series computed using the
reduced, stochastic system for noise intensities ranging from σ = 0.1 to σ = 35.0.
Figure 4 shows the cross-correlation as a function of ln (σ ).

The reduction method also allows one to predict the unobserved number of ex-
posed individuals based on the observed number of infected individuals. Using the
center manifold equation given by Eq. (21) along with the equations which relate the
original S, E, and I variables to the transformed U , V , and W variables, one can find
the following relation between exposed and infected individuals:

E = γ

α
I + μ2

αβ0
(R0 − 1). (23)

In Eq. (23), the first term on the right-hand side provides a measure of the statistical
steady state flow conditions for exposure and infection, since γ −1 and α−1 are re-
spectively the compartmental recovery and infection times. The second term on the
right-hand side is a correction, not predicted in the classical theory. An increase in
R0 leads to an increase in the speed of infection per infectious period. This increase
induces an increase in the number of exposed individuals.

Figures 5(a)–(d) show a comparison between time series of the fraction of the
population that has been exposed to a disease, E. The first time series was com-
puted using the complete, stochastic system of transformed equations. We then used
the simulated I data to predict the number of exposed individuals using Eq. (23).
The predicted number of exposed individuals constitutes the second time series. This
comparison was performed for four different sets of parameter values, corresponding
to the values used in Figs. 1(a)–(d). As one can see, there is excellent agreement be-
tween the predicted number of exposed individuals and the actual, simulated number
of exposed individuals.
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Fig. 5 Time series of the fraction of the population that has been exposed to a disease, E. The time se-
ries are found using the complete, stochastic system of transformed equations of the SEIR model (red,
solid line) as well as the predictive equation given by Eq. (23) (blue, dashed line). The parameter val-
ues used in the simulation are given as (a) μ = 0.02 (year)−1, α = 1/0.0279 (year)−1, γ = 1/0.01
(year)−1, β0 = 1575.0 (year)−1, β1 = 0.1, β2 = ζ1 = ζ2 = ω = 0, and σ = 2.0; (b) μ = 0.03 (year)−1,
α = 1/0.0279 (year)−1, γ = 1/0.01 (year)−1, β0 = 1575.0 (year)−1, β1 = 0.1, β2 = ζ1 = ζ2 = ω = 0,
and σ = 2.0; (c) μ = 0.03 (year)−1, α = 1/0.0279 (year)−1, γ = 1/0.01 (year)−1, β0 = 1575.0
(year)−1, β1 = 0.15, β2 = ζ1 = ζ2 = ω = 0, and σ = 5.0; (d) μ = 0.04 (year)−1, α = 1/0.0279 (year)−1,
γ = 1/0.01 (year)−1, β0 = 1575.0 (year)−1, β1 = 0.1, β2 = ζ1 = ζ2 = ω = 0, and σ = 2.0 (Color figure
online)

Figures 6(a)–(c) show time series of the fraction of the population that has been ex-
posed to a disease, E, along with the fraction of infectious individuals, I . Figure 6(a)
shows the observed data of infectious individuals and the predicted number of unob-
served exposed individuals. Figures 6(b)–(c) show the average number of infectious
individuals computed using the reduced, stochastic system of equations using 25 real-
izations of noise for two different noise intensities along with the associated number
of exposed individuals.

7 Discussion

We have considered a stochastic SEIR model where the contact rate fluctuates sea-
sonally and where multiplicative noise acts on the governing equation for infectious
individuals. In this way, we emulated the noise found within data of measurable infec-
tious individuals in a population. The main result of our work was the derivation of a
lower-dimensional model whose solution, both in amplitude and timing of outbreaks,
agrees with the solution of the higher-dimensional original model.

There are many types of high-dimensional stochastic models, which lend them-
selves to model reduction. For example, a time delay is often included in epidemic
models when one wishes to model a disease exposure time. To reduce the ana-
lytical complications introduced by the time delay, one can approximate the de-
lay through a cascade of hundreds of exposed compartments (Mocek et al. 2005).
Other high dimensional models are generated when individual interactions within
a population are modeled as a network (Pastor-Satorras and Vespignani 2001;
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Fig. 6 Time series of the fraction of the population that has been exposed to a disease, E (black, solid line)
and infected with a disease, I (red, dashed line). The time series of exposed individuals is based on the cen-
ter manifold equation and is given by Eq. (23). Part (a) shows the observed data of infectious individuals
along with the predicted, unobserved number of exposed individuals. Parts (b) and (c) show the average
number of infectious individuals computed using the reduced, stochastic system of equations using 25
realizations of noise with intensity (b) σ = 2.0, and (c) σ = 10.0, along with the associated number of ex-
posed individuals. The parameter values used in the simulation are given as follows: μ = 0.0299 (year)−1,
α = 30.0 (year)−1, γ = 90.0 (year)−1, β0 = 1329.345 (year)−1, β1 = 0.1, β2 = 0.05, ζ1 = −0.2128,
ζ2 = −0.2554, and ω = 0.521 (Color figure online)

Moreno et al. 2002). Researchers have considered epidemics on a variety of static
networks, including small world networks (Vazquez 2006) and transportation net-
works (Colizza et al. 2006), as well as on adaptive networks, where individuals may
break their interaction connections and “rewire” to form new interaction connections
(Shaw and Schwartz 2008).

In these high dimensional model examples, one generally needs to resort to mas-
sive computation and analytical results are usually very difficult or impossible to
obtain. In particular, it is not currently possible to perform these computations in real-
time. However, many high dimensional epidemic models do contain time scales that
are well separated. Therefore, it is possible to take advantage of these well-separated
time scales to reduce the dimension of the model. In this article, we have performed
just such a model reduction. The stochastic SEIR model with seasonal fluctuations,
which contains fast collapse and slow dynamic time scales, illustrates the power of
our method. It is important to note that the analysis could straightforwardly be ex-
tended to a SEIR-type model where the exposed class was modeled using hundreds
of compartments.

The mathematical/computational techniques used here are general, and can be ap-
plied to many population dynamics problems. Our analysis started by transforming
the deterministic SEIR system of equations to a new system of equations with a spe-
cific eigenvalue structure. Employing center manifold theory, we were able to find the
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reduced system of equations that describes the dynamics on the lower dimensional
manifold. Due to the specific nature of the noise, we can use the deterministic center
manifold equation to reduce the stochastic SEIR model. The end result is a reduced
stochastic model that accurately captures the timing of the initial disease outbreak as
well as the timing of subsequent outbreaks for decades long times compared to the in-
fectious period. The solution to the reduced stochastic model additionally agrees very
well in amplitude with the solution to the original high-dimensional model. Moreover,
the reduced model is robust in that it accurately captures the timing and amplitude
for a wide range of parameter values.

As a direct application to observations, we have also used our deterministic model
to fit actual measles data. Once the fitting parameters were determined, we solved our
reduced stochastic model and compared the resulting solution with the data. Beyond
providing good agreement with the data, we saw that a large noise intensity was
needed before the stochastic solution significantly deviated from the data. In this way,
the stochastic solutions are very robust to noise. We were able to further identify the
noise effects through cross-correlation computations.

Generally, the actual data that is measured in society is that of the number of ob-
served cases. Not only are exposed individuals not measured, an exposed individual
often will not even know of the exposure and the infection that is to come. How-
ever, with our novel stochastic reduction method, we are now able to predict how
many unobserved exposed individuals there are in a population based solely on the
measurable number of infectious individuals.

In summary, a new method of stochastic model reduction for an epidemiological
model with seasonal fluctuations has been performed. By capturing both the tim-
ing of disease outbreak as well as the amplitude of the outbreak for long temporal
scales, our reduced model provides impressive time series prediction. By accurately
modeling actual stochastic disease data, we enable the application of novel control
methods where the timing of vaccine delivery and a disease outbreak is important.
Moreover, the method is general, and may be extended to a variety of compartmental
and network models, including models with a high dimension.

Acknowledgements The authors gratefully acknowledge support from the Office of Naval Research,
and the National Institutes of Health. E.F. is supported by Award Number N0017310-2-C007 from
the Naval Research Laboratory (NRL). I.B.S. was supported by the NRL Base Research Program
N0001412WX30002, and by Award Number R01GM090204 from the National Institute of General Med-
ical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Appendix A: Deterministic Model Reduction

The F1, F2, and F3 expressions found in Eqs. (13a)–(13c) are given as follows:

F1(U,V,W,μ)

= μγ0(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]
β2

0α0(α0 + γ0)
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+
(

−α0 − μ2 − (α0 + μ2)(γ0 + μ2)β(t)

β0α0
+ μ2γ0β(t)

β0(α0 + γ0)

− β(t)μ3γ0α0

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
U

+
(

− β(t)μ3γ0α0

(α0 + μ2)(γ0 + μ2)(α0 + γ0)
+ μ2γ0β(t)

β0(α0 + γ0)

)
V

− γ0β(t)(γ0 + μ2)(α0 + μ2)W

α0(α0 + γ0)β0
− γ0β(t)μWU

α0 + γ0
− β(t)μUV

− γ0β(t)μV W

α0 + γ0
− β(t)μU2, (24a)

F2(U,V,W,μ)

= μ(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]
β2

0 (α0 + γ0)

+
(

− (α0 + μ2)(γ0 + μ2)β(t)

β0γ0
+ α0μ

2β(t)

β0(α0 + γ0)
+ α0

− β(t)μ3α0
2

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
U

+
(

−μ2 + α0μ
2β(t)

β0(α0 + γ0)
− β(t)μ3α0

2

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
V

− (α0 + μ2)(γ0 + μ2)β(t)W

β0(α0 + γ0)
− β(t)α0μWU

α0 + γ0

− β(t)α0μUV

γ0
− β(t)α0μV W

α0 + γ0
− β(t)α0μU2

γ0
, (24b)

F3(U,V,W,μ)

− μ(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]
α0β

2
0

+
(

β(t)(α0 + μ2)(γ0 + μ2)(α0 + γ0)

β0α0γ0
− β(t)μ2

β0
− α0 − γ0

+ μ3β(t)α0

(α0 + μ2)(γ0 + μ2)

)
U +

(
−β(t)μ2

β0
+ μ3β(t)α0

(α0 + μ2)(γ0 + μ2)

)
V

+ (γ0 + μ2)(β(t)α0 + β(t)μ2 − β0α0)W

β0α0
+ β(t)μWU

+ β(t)μ(α0 + γ0)UV

γ0
+ β(t)μV W + β(t)μ(α0 + γ0)U

2

γ0
. (24c)
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Appendix B: Stochastic Model Reduction

The stochastic, transformed equations are given as follows:

dU

dτ
= μγ0(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]

β2
0α0(α0 + γ0)

+
(

−α0 − μ2 − (α0 + μ2)(γ0 + μ2)β(t)

β0α0
+ μ2γ0β(t)

β0(α0 + γ0)

− β(t)μ3γ0α0

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
U

+
(

− β(t)μ3γ0α0

(α0 + μ2)(γ0 + μ2)(α0 + γ0)
+ μ2γ0β(t)

β0(α0 + γ0)

)
V

− γ0β(t)(γ0 + μ2)(α0 + μ2)W

α0(α0 + γ0)β0
− γ0β(t)μWU

α0 + γ0

− β(t)μUV − γ0β(t)μV W

α0 + γ0
− β(t)μU2, (25a)

dV

dτ
= μ(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]

β2
0 (α0 + γ0)

+
(

− (α0 + μ2)(γ0 + μ2)β(t)

β0γ0
+ α0μ

2β(t)

β0(α0 + γ0)
+ α0

− β(t)μ3α0
2

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
U

+
(

−μ2 + α0μ
2β(t)

β0(α0 + γ0)
− β(t)μ3α0

2

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
V

− (α0 + μ2)(γ0 + μ2)β(t)W

β0(α0 + γ0)
− β(t)α0μWU

α0 + γ0
− β(t)α0μUV

γ0

− β(t)α0μV W

α0 + γ0
− β(t)α0μU2

γ0
, (25b)

dW

dτ
= −μ(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]

α0β
2
0

+
(

β(t)(α0 + μ2)(γ0 + μ2)(α0 + γ0)

β0α0γ0
− β(t)μ2

β0
− α0 − γ0

+ μ3β(t)α0

(α0 + μ2)(γ0 + μ2)

)
U +

(
−β(t)μ2

β0
+ μ3β(t)α0

(α0 + μ2)(γ0 + μ2)

)
V

+ (γ0 + μ2)(β(t)α0 + β(t)μ2 − β0α0)W

β0α0
+ β(t)μWU
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+ β(t)μ(α0 + γ0)UV

γ0
+ β(t)μV W + β(t)μ(α0 + γ0)U

2

γ0

+ μσ

(
(α0 + γ0)

γ0
U + W + I0

)
φ. (25c)

As discussed in the article, we can use the deterministic center manifold result to
reduce the stochastic model. Substituting the deterministic center manifold equation
given by Eq. (21) into the full system of stochastic, transformed equations gives the
following reduced stochastic model that describes the dynamics on the center mani-
fold:

dV

dτ
= μ(β(t) − β0)[−β0μα0 + (α0 + μ2)(γ0 + μ2)]

β2
0 (α0 + γ0)

+
(

− (α0 + μ2)(γ0 + μ2)β(t)

β0γ0
+ α0μ

2β(t)

β0(α0 + γ0)
+ α0

− β(t)μ3α0
2

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)(
− γ 2

0

(α0 + γ0)2
W

)

+
(

−μ2 + α0μ
2β(t)

β0(α0 + γ0)
− β(t)μ3α0

2

(α0 + μ2)(γ0 + μ2)(α0 + γ0)

)
V

− (α0 + μ2)(γ0 + μ2)β(t)W

β0(α0 + γ0)
−

β(t)α0μW(− γ 2
0

(α0+γ0)
2 W)

α0 + γ0

−
β(t)α0μ(− γ 2

0
(α0+γ0)

2 W)V

γ0
− β(t)α0μV W

α0 + γ0

−
β(t)α0μ(− γ 2

0
(α0+γ0)

2 W)
2

γ0
, (26a)

dW

dτ
= −μ(β(t) − β0)(−β0μα0 + (α0 + μ2)(γ0 + μ2))

α0β
2
0

+
(

β(t)(α0 + μ2)(γ0 + μ2)(α0 + γ0)

β0α0γ0
− β(t)μ2

β0
− α0 − γ0

+ μ3β(t)α0

(α0 + μ2)(γ0 + μ2)

)(
− γ 2

0

(α0 + γ0)2
W

)

+
(

−β(t)μ2

β0
+ μ3β(t)α0

(α0 + μ2)(γ0 + μ2)

)
V

+ (γ0 + μ2)(β(t)α0 + β(t)μ2 − β0α0)W

β0α0
+ β(t)μW

(
− γ 2

0

(α0 + γ0)2
W

)
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+
β(t)μ(α0 + γ0)(− γ 2

0
(α0+γ0)

2 W)V

γ0
+ β(t)μV W

+
β(t)μ(α0 + γ0)(− γ 2

0
(α0+γ0)

2 W)
2

γ0
+ μσ

(
(α0 + γ0)

γ0
U + W + I0

)
φ.

(26b)
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