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We consider a general model of self-propelling particles interacting through a pairwise attractive force in the
presence of noise and communication time delay. Previous work by Erdmann et al. �Phys. Rev. E 71, 051904
�2005�� has shown that a large enough noise intensity will cause a translating swarm of individuals to transition
to a rotating swarm with a stationary center of mass. We show that with the addition of a time delay, the model
possesses a transition that depends on the size of the coupling amplitude. This transition is independent of the
initial swarm state �traveling or rotating� and is characterized by the alignment of all of the individuals along
with a swarm oscillation. By considering the mean field equations without noise, we show that the time-delay-
induced transition is associated with a Hopf bifurcation. The analytical result yields good agreement with
numerical computations of the value of the coupling parameter at the Hopf point.
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The collective motion of multiagent systems has long
been observed in biological populations including bacterial
colonies �1–3�, slime molds �4,5�, locusts �6�, and fish �7�.
However, mathematical studies of swarming behavior have
been performed for only a few decades. In addition to pro-
viding examples of biological pattern formation, the infor-
mation gained from these mathematical investigations has
led to an increased ability to intelligently design and control
man-made vehicles �8–12�.

Many types of mathematical models have been used to
describe coherent swarms. One popular approach is based on
a continuum approximation in which scalar and vector fields
are used to describe all of the relevant quantities �6,13–16�.
Another popular approach is based on treating every biologi-
cal or mechanical individual as a discrete particle
�7,14,15,17,18�. Depending on the problem, these individual-
based models may be deterministic or stochastic.

Regardless of the type of swarm model being used, one
can see the emergence of ordered swarm states from an ini-
tial disordered state where individual particles have random
velocity directions �13,14,17�. These ordered states may be
translational or rotational in motion, and they may be spa-
tially distributed or localized in clusters.

In particular, it is known that a localized swarm state may
transition to a new dynamical region as the system param-
eters or the noise intensity is changed. For example, it has
been shown in �18� that a planar model of self-propelling
particles interacting via a harmonic attractive potential in the
presence of noise possesses a noise-induced transition
whereby the translational motion of the swarm breaks down
into rotational motion.

Another aspect of swarm modeling that has not yet been
considered is the effect of time delayed interactions arising
from finite communication times between individuals. Much
attention has been given to the effects of time delays in the
context of physiology �19�, optics �20�, neurons �21�, lasers
�22�, and many other types of systems. The aim of this Rapid
Communication is to study the effect of a communication
time delay on a model of self-propelling individuals that in-
teract through a pairwise attractive force in the presence of
noise.

We consider a general two-dimensional �2D� model of a
swarm that consists of identical self-propelled particles of
unit mass. The model is described by the following evolution
equations of motion:

ṙi = vi, �1�

v̇i = �1 − �vi�2�vi − Vi + �i�t� , �2�

where ri�t� and vi�t� are, respectively, the 2D position and
velocity vectors of the ith particle at time t. The terms vi and
−�vi�2vi define, respectively, the mechanisms of self-
propulsion and frictional drag. Therefore, if the last two
terms on the right-hand side of Eq. �2� are neglected, the
particles will approach an equilibrium speed of veq=1.

The term Vi in Eq. �2� describes the social interaction, or
communication, of the ith individual with all of the other
individuals. There are many possible choices for Vi �e.g.,
Morse function, power law function, etc.�. As an example,
we define Vi as follows:

Vi =
a

N
�
j=1

i�j

N

�ri�t� − r j�t − ��� , �3�

where a is the particle interaction coupling parameter, N is
the number of particles, and � is a constant communication
time delay. This particular choice of Vi assumes that only
pairwise interactions are important. Furthermore, the interac-
tion is purely attractive and grows linearly with the separa-
tion between two particles, much like a spring potential.

Lastly, the term �i in Eq. �2� describes a stochastic white
force of intensity D. This noise is independent for different
particles, and is characterized by the following correlation
functions: ��i�t��=0, ��i�t�� j�t��=2D��t− t���ij.

We numerically integrate Eqs. �1�–�3� using a stochastic
fourth-order Runge-Kutta scheme with a constant time step
size of 0.001. To achieve a traveling, localized swarm state,
we used constant initial conditions �23� and switched on the
noise after a short amount of time had passed.

It was shown in �18� that the model described by Eqs.
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�1�–�3� with �=0 �i.e., no time delay� possesses a noise-
induced transition whereby a large enough noise intensity
causes a translating swarm of individuals to transition to a
rotating swarm with a stationary center of mass, where the
center of mass is defined as R�t�= �1 /N��iri�t�.

Figures 1�a� and 1�b� show snapshots of a swarm at t
=18 and t=40, respectively, with a=100, N=300, �=0, and
D=0.08. The noise was switched on at t=10. One can see
that the translating swarm �Fig. 1�a�� has undergone a noise-
induced breakdown to become a rotating swarm �Fig. 1�b��.
For these values of a and N, if a noise intensity of D
�0.054 is used, then the swarm will continue to translate
and it will not transition to a rotational state �24�.

Regardless of which state the swarm is in �translating or
rotating�, the addition of a communication time delay leads
to another type of transition. This transition occurs if the
coupling parameter a is large enough. As an example, we
consider a swarm that has already undergone a noise-induced
transition to a rotational state before switching on the com-
munication time delay.

Figures 2�a�–2�d� show snapshots of a swarm at t=50, t
=100, t=300, and t=600, respectively, with a=2, N=300,
�=1, and D=0.08. The noise was switched on at t=10, and
since the noise intensity D is high enough, the noise caused
the swarm to transition to a rotating state �similar to the one

shown in Fig. 1�b��. With the swarm in this stationary, rotat-
ing state, the communication time delay was switched on at
t=40. One can see that for these values of time delay and
coupling parameter there is no qualitative change in the sta-
tionary, rotating swarm state.

In contrast to this, Figs. 3�a�–3�j� show snapshots of a
swarm at t=50, t=60, t=62, t=64, t=66, t=68, t=70, t
=72, t=74, and t=76, respectively. As in the previous case,
N=300, �=1, D=0.08, the noise was switched on at t=10
�causing the swarm to transition to a stationary, rotating
state�, and once in this rotating state, the time delay was
switched on at t=40. The only difference is that now the
value of the coupling parameter is a=4. One can see that
with the evolution of time, the individual particles become
aligned with one another and the swarm becomes more com-
pact. Additionally, the swarm is no longer stationary, but has
begun to oscillate �Figs. 3�g�–3�j��. This clockwise oscilla-
tion can more clearly be seen in Fig. 4, which consists of the
center of mass R, of the stationary, rotating swarm at t=40
�denoted by a “cross” marker� along with snapshots of the
oscillating swarm taken at t=90.2, t=90.6, t=91.0, and t
=91.4.

This compact, oscillating aligned swarm state looks simi-
lar to a single “clump” that is described in �10�. However,
where each “clump” of �10� contains only some of the total
number of swarming particles, our swarm contains every
particle. Additionally, while a deterministic model along with
global coupling is used to attain the “clumps” of �10�, our
oscillating aligned swarm is attained with the use of noise
and a time delay.

As we have shown, once the stochastic swarm is in the
stationary, rotating state, the addition of a time delay induces
an instability. At this point, the stochastic perturbations have
a minimal effect on the swarm. Therefore, we will investi-
gate the stability of the stationary, rotating swarm state by
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FIG. 1. Snapshot of �a� a translating swarm �taken at t=18�, and
�b� a rotating swarm �taken at t=40�, with a=100, N=300, �=0,
and D=0.08.
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FIG. 2. Snapshots of a swarm taken at �a� t=50, �b� t=100, �c�
t=300, and �d� t=600, with a=2, N=300, and D=0.08. The swarm
was in a rotational state when the time delay of �=1 was switched
on at t=40.
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deriving the mean field equations without noise. The coordi-
nates xi and yi of each particle in the swarm can be written as
follows:

xi = X + �xi and yi = Y + �yi, �4�

where X and Y are the coordinates of the center of mass R of
the swarm. Substitution of Eq. �4� into the second-order dif-
ferential equation that is equivalent to Eqs. �1�–�3� gives an
evolution equation for each xi and yi. Summing all i of these
equations, using the fact that

1

N
�
i=1

N

xi�t� = X�t� and
1

N
�
i=1

N

yi�t� = Y�t� , �5�

and ignoring all fluctuation terms, leads to the zero-order
mean field equations for the center of mass as follows:

Ẍ�t� = ��1 − Ẋ2�Ẋ − ẊẎ2��t� − a�X�t� − X�t − ��� , �6�

Ÿ�t� = ��1 − Ẏ2�Ẏ − ẎẊ2��t� − a�Y�t� − Y�t − ��� . �7�

The steady state is given by Ẋ�t�= Ẏ�t�=0, X�t�=X�t−��,
and Y�t�=Y�t−��. Consideration of small disturbances about
the steady state allows one to determine the linear stability.
The characteristic equation associated with the linearization
of Eqs. �6� and �7� is

��1 − �� + ae−�� − a = 0, �8�

where the exponential term exp�−��� is due to the time delay
in the governing equations. Since Eq. �8� is transcendental
�which is often the case for delay differential equations�,

there exists the possibility of an infinite number of solutions.
Our numerical simulations indicate the existence of a su-

percritical Hopf bifurcation as the value of the coupling pa-
rameter a is increased �Figs. 2–4�. We identify the Hopf
bifurcation point by choosing the eigenvalue to be purely
imaginary. Then our choice of �= i� is substituted into Eq.
�8�. The separation of Eq. �8� into real and imaginary parts
leads to an equation for the frequency �, along with an equa-
tion for the value of a at the Hopf bifurcation point. The two
equations are
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FIG. 3. Snapshots of a swarm taken at �a� t=50, �b� t=60, �c�
t=62, �d� t=64, �e� t=66, �f� t=68, �g� t=70, �h� t=72, �i� t=74,
and �j� t=76, with a=4, N=300, and D=0.08. The swarm was in a
rotational state when the time delay of �=1 was switched on at t
=40.
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FIG. 4. Motion of the oscillating swarm about the center of
mass of the stationary, rotating swarm. The oscillating swarm is
shown at t=90.2 �left�, t=90.6 �top�, t=91.0 �right�, and t=91.4
�bottom�. The location of the center of mass of the swarm �at t
=40� is denoted with a “cross” marker �center�.
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FIG. 5. Comparison of analytical �solid line� and numerical
�“cross” markers� values of aH and � for several choices of �. The
analytical result is found using Eqs. �9� and �10�, while the numeri-
cal result is found using a continuation method �25� for Eqs. �6� and
�7�. The inset shows the stochastic trajectory of the center of mass
of the swarm from t=45 to t=90 for the example shown in Fig. 3.
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�2 + � cot���� − � csc���� = 0, �9�

aH =
�

sin����
. �10�

Given a specific value of �, Eq. �9� can be solved numeri-
cally for �. These values of � and � can then be substituted
into Eq. �10� to determine the value of a at the Hopf point.

Figure 5 shows an excellent comparison of the analytical
result given by Eqs. �9� and �10� with a numerical result
which was found using a continuation method �25� for Eqs.
�6� and �7� for several choices of �. Furthermore, for �=1,
the value of a at the bifurcation point is aH	3.2. This value
of aH corresponds very well to the change in behavior of the
stochastic swarm that was seen as the value of the coupling
parameter was increased from a=2 to a=4 �Figs. 2 and 3�.

More evidence of the Hopf bifurcation is seen in the inset
of Fig. 5. The inset shows the stochastic trajectory of the
center of mass of the swarm from t=45 to t=90 for the
example shown in Fig. 3. Once the time delay is switched on
at t=40 �with the swarm located at the center of the inset
figure�, the swarm begins to oscillate. The swarm moves
along an elliptical path �the position of its center of mass is
denoted at several times that correspond to Figs. 3�b�, 3�d�,

3�f�, 3�h�, and 3�j��, until it eventually converges to the cir-
cular limit cycle.

To summarize, we studied the dynamics of a self-
propelling swarm in the presence of noise and a constant
communication time delay and prove that the delay induces a
transition that depends upon the size of the interaction cou-
pling coefficient. Although our analytical and numerical re-
sults were obtained using a model with linear, attractive in-
teractions, the analysis may be applied to models with more
general forms of social interaction �these results will appear
elsewhere�.

Our results provide insight into the stability of complex
systems comprised of individuals interacting with one an-
other with a finite time delay in a noisy environment. Fur-
thermore, the results may prove to be useful in controlling
man-made vehicles where actuation and communication are
delayed, as well as in understanding swarm alignment in
biological systems.
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