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We consider the problem of stochastic prediction and control in a time-dependent stochastic

environment, such as the ocean, where escape from an almost invariant region occurs due to

random fluctuations. We determine high-probability control-actuation sets by computing regions of

uncertainty, almost invariant sets, and Lagrangian coherent structures. The combination of

geometric and probabilistic methods allows us to design regions of control, which provide an

increase in loitering time while minimizing the amount of control actuation. We show how the

loitering time in almost invariant sets scales exponentially with respect to the control actuation,

causing an exponential increase in loitering times with only small changes in actuation force. The

result is that the control actuation makes almost invariant sets more invariant. VC 2011 American
Institute of Physics. [doi:10.1063/1.3539836]

Prediction and control of the motion of an object in time-

dependent and stochastic environments is an important

and fundamental problem in nonlinear dynamical systems.

One of the main goals of control is the design of a theory

that can take unstable states and render them stable. For

example, small perturbations at the base of an inverted

pendulum will stabilize the inverted state. Noise poses a

greater problem for deterministically controlled states, in

that stochastic effects destabilize the states as well as their

neighborhoods. Therefore, control theory of stochastic dy-

namical systems may be addressed by examining the

change in stability of certain sets. We present a variety of

geometric and probabilistic set-based methods that enable

one to compute controllable sets. For a particle moving

under the influence of deterministic and stochastic forces

with no control, these sets determine regions which are

unstable in the sense that the particle will leave the set af-

ter a sufficiently long time. Controls added to particle dy-

namics, to increase the time to escape (or loitering time),

have a strong dependence on the probabilistic and geomet-

ric set characteristics. The determination of controls and

associated sets allow for an increase in the amount of time

the particle can loiter in a particular region while mini-

mizing the amount of control actuation. Our theoretical

analysis shows how an increase in the strength of the con-

trol force leads to a decrease in the probability that an

object will escape from the control region. In fact, we have

found that small changes in the control actuation force

have an exponential effect on the loitering time of the

object. Additionally, we show how the exponential increase

in escape times from the controlled sets is related to the

problem of noise-induced escape from a potential well.

I. INTRODUCTION

Ocean circulation impacts weather, climate, marine fish

and mammal populations, and contaminant transport, making

ocean dynamics of great industrial, military, and scientific

interest. A major problem in the field of ocean dynamics

involves forecasting, or predicting, a variety of physical

quantities, including temperature, salinity, and density. By

fusing recently measured data with detailed flow models, it

is possible to achieve improved prediction. Therefore, fore-

casts occur with increased accuracy.1 As a result, ocean sur-

veillance may be improved by incorporating the continuous

monitoring of a region of interest.

Researchers have used surface drifters and submerged

floats to acquire data for many years. More recently, sensing

platforms such as autonomous underwater gliders2–4 have

been developed. The gliders can operate in both littoral

(coastal) and deep-ocean regimes, and may be used for data

acquisition, surveillance, and reconnaissance. One drawback

in the use of gliders involves their limited amount of total con-

trol actuation due to energy constraints, such as short battery

life. For applications such as regional surveillance, energy

constraints may be alleviated by taking advantage of the dy-

namical flow field structures and their respective body forces.

Autonomous underwater gliders are subjected to drift

due to hydrodynamic forces. This drift can be extremely

complicated since the velocity fields found in the ocean are

aperiodic in time and feature a complex spatial structure.

Instead of constantly reacting to the drift (and thereby

expending energy), one can minimize the glider’s energy ex-

penditure by taking advantage of the underlying structure

found in geophysical flows. However, in order to harness the

ocean forces to minimize energy expenditure during control

actuation, one needs to analyze the structures from the cor-

rect dynamical viewpoint.a)Electronic mail: eric.forgoston@montclair.edu.
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The potential for dynamical systems tools to shed light

on complex, even turbulent, flow fields such as ocean dy-

namics, has been understood for decades. Work in this area

has intensified in the past decade with a new focus placed on

the improved Lagrangian perspective that dynamical systems

approaches may provide, especially for complex, aperiodic

flows in which the traditional Eulerian perspective on the

flow is unhelpful or even misleading. During boundary layer

separation, for example, sheet-like flow structures coincide

with fluid particles being ejected from the wall region, a

technologically important feature that an Eulerian frame-

work fails to capture in unsteady cases, but which has a clear

Lagrangian signature that can be identified using finite-time

Lyapunov exponents (FTLE).5 In liquid jet breakup, a simi-

lar ejection process occurs during primary atomization, but a

limited Lagrangian perspective is provided by the liquid–gas

interface, revealing liquid sheets and ligaments that precede

droplet formation.6 The development of these critical fluid

sheets and ligaments can be traced to unsteady, finite-ampli-

tude global flow structures.7 Dynamical systems tools thus

provide a new approach to the characterization and control

of these important flows. Geophysical flows offer another

example where an Eulerian framework is ineffective in the

diagnosis of large Lagrangian structures and the measure-

ment of transport. For prediction and control of particle dy-

namics in large surveillance regions of interest, Lagrangian

structures of geophysical flows need to be characterized in

both deterministic and stochastic settings.

The field of geophysical fluid dynamics (GFD) involves

the study of large-scale fluid flows that occur naturally. GFD

flows are, by nature, aperiodic and stochastic. The data sets

describing them are usually finite-time and of low resolution.

Established tools of dynamical systems have proven to be less

effective in these cases: while providing some insight, they

cannot provide realistic or detailed flow field data relevant to

the trajectories of tracer particles. For this, dynamical systems

tools can be applied to fluid flows in an alternative way, by

interpreting the Eulerian flow field u(x, t) as a dynamical sys-

tem x0 ¼ u(x, t) describing the trajectories of tracer particles.

The phase space and real space are identical here and due to

the incompressibility condition r�u¼ 0, the resulting dynami-

cal system is conservative. This “chaotic advection” approach

originated with Aref8 and demonstrated that even simple lami-

nar two-dimensional (2D) periodic and three-dimensional (3D)

steady flows9 could lead to complex, chaotic particle trajecto-

ries. Figure 1 illustrates an example of how particles in a peri-

odic flow may exhibit unexpected trajectories. In this figure, a

single-layer quasi-geostrophic beta plane is being driven by a

bimodal wind-stress with a small amplitude periodic perturba-

tion. Details of this ocean model can be found in the Appendix.

In the last two decades, this approach has led to new

tools including the study of transport by coherent struc-

tures,10 lobe dynamics,11 distinguished trajectories,12 and

global bifurcations.13,14 Even though the transport control-

ling structures in GFD flows are inherently complicated and

unsteady, their understanding is necessary to the design of

glider controls. To overcome this obstacle we combine a set

of dynamical systems tools that have proven effective in

higher dimensions15 and stochastic problems.16,17

In this paper, we will consider a well-known driven dou-

ble-gyre flow as an example to illustrate our prediction/control

framework.18 This model can be thought of as a simplified

version of the double-gyre shown in Fig. 1 which is a solution

to a realistic quasi-geostrophic ocean model. It should be

noted that our methods are general and may be applied to any

flow of interest. The goal of our approach is the production of

a complete picture of particle trajectories and tracer lingering

times, which enables one to design a control strategy that lim-

its tracers from switching between gyres.

The techniques we will use to analyze the dynamical sys-

tems are based on both deterministic and stochastic analysis

methods, and reveal different structures depending on the sys-

tem under examination. In the deterministic case, the Lagran-

gian coherent structures (LCS) reveal much about transport

and information related to the basin boundaries. They also

pinpoint regions of local sensitivity in the phase space of in-

terest. Since basin boundaries are most sensitive to initial con-

ditions, uncertainties in the data near the boundaries generate

obstructions to predictability. Therefore, highly uncertain

regions in phase space may be revealed by computing local

probability densities of uncertain regions in the deterministic

case, but using noisy initial data. Finally, in the time-depend-

ent stochastic case, we can describe which sets contain very

long term, albeit finite, trajectories. The sets are almost invari-

ant due to the stochastic forcing on the system, which causes

random switching between the almost invariant sets. The tools

we use here are based on the stochastic Frobenius–Perron

(SFP) operator theory. Once the full structure of almost invar-

iant sets is identified along with regions of high uncertainty,

control strategies may be designed to maintain long time

trajectories within a given region with minimal actuation. In

FIG. 1. (Color online) Streamfunction (background color) and two particle

trajectories within a single-layer quasi-geostrophic ocean model (see Appen-

dix) subject to low-amplitude periodic forcing whose mean gives a steady

double-gyre/western boundary current flow solution. Initial points on the tra-

jectory are identified with open circles.
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Fig. 1, one can see that one particle’s trajectory remains in the

lower gyre for a long period of time, while the other particle

escapes from the lower gyre to the upper gyre. The tools we

will develop and outline in this article will enable one to

know if and when a control force must be actuated to prevent

the particle from escaping.

The layout of the paper is as follows. In Sec. II we pres-

ent the stochastic double-gyre system and examine the deter-

ministic dynamical features. In Sec. III, we show how to use

the FTLE to describe transport, and we show in Sec. IV how

to quantify uncertainty regions. We then turn to the stochastic

system, and describe in Sec. V how to compute almost invari-

ant sets. Section VI contains a discussion of our corral control

strategy and Sec. VII contains the conclusions and discussion.

II. THE MODEL

A simple model of the wind-driven double-gyre flow is

provided by

_x ¼ �pA sinðpf ðx; tÞÞ cosðpyÞ � axþ g1ðtÞ; (1a)

_y ¼ pA cosðpf ðx; tÞÞ sinðpyÞ df

dx
� ayþ g2ðtÞ; (1b)

f ðx; tÞ ¼ � sinðxtþ wÞx2 þ ð1� 2� sinðxtþ wÞÞx: (1c)

When �¼ 0, the double-gyre flow is time-independent, while

for � = 0, the gyres undergo a periodic expansion and con-

traction in the x direction. In Eqs. (1a)–(1c), A approximately

determines the amplitude of the velocity vectors, x/2p gives

the oscillation frequency, � determines the amplitude of the

left-right motion of the separatrix between the two gyres, w is

the phase, a determines the dissipation, and gi(t) describes a

stochastic white noise with mean zero and standard deviation

r ¼
ffiffiffiffiffiffi
2D
p

, for noise intensity D. This noise is characterized

by the following first and second order statistics: hgi(t) i ¼ 0

and hgi(t) gj(t
0) i¼ 2Ddijd(t� t0) for i¼ 1, 2. In the rest of the

article we shall use the following parameter values: a¼ 0.005,

A¼ 0.1, �¼ 0.15, and x¼ 2p/20. We consider the dynamics

restricted to the domain f(x, y)j0� x� 2 and 0� y� 1g. An

unforced, undamped autonomous version of the double-gyre

model was studied by Rom-Kedar et al.19 and an undamped

system with different forcing was studied by Froyland and

Padberg.20

Prior to defining the control of certain sets of the sto-

chastic system, we first describe the important dynamical

features of the deterministic part of Eqs. (1a)–(1c). There are

two attracting periodic orbits, which correspond to two fixed

points of the Poincaré map defined by sampling the system

at the forcing period. For each fixed point, there corresponds

a left and a right basin of attraction. Local analysis on the

Poincaré section about the fixed points reveals the attractors

to be spiral sinks, which generate the global double-gyre. A

representative basin map at the phase w¼ 0 is shown in

Fig. 2. One can see the complicated basin boundary structure

in which the basins of attraction are intermingled, a signature

of the existence of a fractal basin boundary. There are also

several unstable (saddle) periodic orbits corresponding to

fixed points that lie along or close to the domain boundary.

Due to the intermingling of the basin boundaries, one can

expect that small perturbations, or uncertainties, in initial con-

ditions near the basin boundary will generate large changes in

dynamical behavior. This can occur deterministically, or

when noise is added to the system. Therefore, we quantify

regions of uncertainty in phase space in both deterministic

and stochastic settings in Secs. IV and V, respectively.

III. FINITE-TIME LYAPUNOV EXPONENTS

One method that can be used to understand transport

and which quantifies localized sensitive dependence to initial

conditions in a given fluid flow involves the computation of

FTLE. In a deterministic setting, the FTLE also gives an

explicit measure of phase space uncertainty. Given a dynam-

ical system, one is often interested in determining how par-

ticles that are initially infinitesimally close behave as time

t!61. It is well-known that a quantitative measure of this

asymptotic behavior is provided by the classical Lyapunov

exponent.21 In a similar manner, a quantitative measure of

how much nearby particles separate after a specific amount

of time has elapsed is provided by the FTLE.

In the early 1990s, Pierrehumbert22 and Pierrehumbert

and Yang23 characterized atmospheric structures using

FTLE fields. In particular, their work enabled the identifica-

tion of both mixing regions and transport barriers. Later, in

a series of papers published in the early 2000s, Haller24–26

introduced the idea of LCS in order to provide a more rigor-

ous, quantitative framework for the identification of fluid

structures. Haller26 proposed that the LCS be defined as a

ridge of the FTLE field, and this idea was formalized several

years later by Shadden, Lekien, and Marsden.27 When com-

puting the FTLE field of a dynamical system, these LCS, or

ridges, are seen to be the structures which have a locally

maximal FTLE value.

Although the FTLE/LCS theory can be extended to arbi-

trary dimension,28 in this article we consider a 2D velocity

field v : R2 � I ! R2 given by the deterministic part of

Eqs. (1a)–(1c) which is defined over the time interval I¼ [ti,
tf] �R and the following system of equations:

FIG. 2. (Color online) The basin Poincaré map for the deterministic part of

Eqs. (1a)–(1c) at phase w¼ 0. The locations of the attracting fixed points cor-

responding to periodic orbits are denoted by the stars. The color represents the

convergence rate to the attractors. As shown by the color bar, positive values

converge to the left basin and negative values converge to the right basin. The

largest magnitude values converge the fastest. Four saddle fixed points are

located within the boundaries of the domain, and are denoted by large dots.

The remaining two are located at (0.995, 1.005) and (2.010, 0.995).
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_zðt; ti; z0Þ ¼ vðzðt; ti; z0Þ; tÞ ; (2a)

zðti; ti; z0Þ ¼ z0 ; (2b)

where z¼ (x, y)T [ R2, z0 [ R2, and t [ I.
As previously stated, the trajectories of this dynamical

system in the infinite time limits can be quantified with the

system’s Lyapunov exponents. If one restricts the Lyapunov

exponent calculation to a finite-time interval, the resulting

exponents are the FTLE. In practice, the FTLE computation

involves consideration of nearby initial conditions and the

determination of how the trajectories associated with these

initial conditions evolve in time. Therefore, the FTLE pro-

vides a local measure of sensitivity to initial conditions and

measures the growth rates of the linearized dynamics about

the trajectories. Since the details of the derivation of the

FTLE24–29 as well as applications that employ the FTLE30–32

have appeared in the literature, we shall only briefly summa-

rize the procedure.

The solution of the dynamical system given by Eqs.

(2a)–(2b) from the initial time ti to the final time tiþ T can

be viewed as the flow map /tiþT
ti

which is defined as follows:

/tiþT
ti

: z0 7!/tiþT
ti
ðz0Þ ¼ zðti þ T; ti; z0Þ: (3)

We consider an initial point located at z at ti¼ 0 along with a

perturbed point located at zþ dz(0) at ti¼ 0. Using a Taylor

series expansion, one finds that

dzðTÞ ¼
d/tiþT

ti
ðzÞ

dz
dzð0Þ þ Oðjjdzð0Þjj2Þ: (4)

Dropping the higher order terms, the magnitude of the linear-

ized perturbations is given as

jjdzðTÞjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hdzð0Þ;Di

p
; (5)

where D is the right Cauchy–Green deformation tensor and

is given as follows:

Dðz; ti; TÞ ¼
d/tiþT

ti
ðzðtÞÞ

dzðtÞ

 !�
d/tiþT

ti
ðzðtÞÞ

dzðtÞ

 !
; (6)

with * denoting the adjoint. Then the FTLE can be defined as

rðz; ti; TÞ ¼
1

jTj ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðDÞ

p
; (7)

where kmax(D) is the maximum eigenvalue of D.

For a given z [ R2 at an initial time ti, Eq. (7) gives

the maximum finite-time Lyapunov exponent for some finite

integration time T (forward or backward), and provides a mea-

sure of the sensitivity of a trajectory to small perturbations.

The FTLE field given by r(z, ti, T) can be shown to ex-

hibit ridges of local maxima in phase space. The ridges of

the field indicate the location of attracting (backward time

FTLE field) and repelling (forward time FTLE field) struc-

tures. In 2D space, the ridge is a curve which locally maxi-

mizes the FTLE field so that transverse to the ridge one finds

the FTLE to be a local maximum.

Figure 3 shows a snapshot taken at phase w¼ 0 of the

forward time FTLE field calculated using the deterministic

form of Eqs. (1a)–(1c) for a finite integration time T¼ 20.

Figure 3 shows that there are ridges (in red) of locally maxi-

mal FTLE values. These ridges or LCS effectively separate

the phase space into distinct dynamical regions. For the

deterministic system, a particle placed in one of these dis-

tinct regions will remain in that region as the system evolves

in time. Also, note that the red ridges appear to be a subset

of the basin boundary set separating the two basins of attrac-

tion shown in Fig. 2.

In the stochastic system, the noise acts continuously on

a particle placed in one of these distinct basins and, there-

fore, it is possible that the particle will cross the LCS and

move into the other basin. Even though we find the LCS

using the deterministic system, the location of these struc-

tures is a valuable tool in understanding how a particle

escapes from the basin in which it is initially placed.

Coupled with the ideas of uncertain sets and almost invariant

sets described below, we will use the LCS information pro-

vided by the FTLE field to determine appropriate regions of

control. In this way, it is possible to increase the loitering

times of a particle in a basin while minimizing the amount of

control actuation.

IV. UNCERTAIN SETS

In this section, we describe a method that measures the

fraction of uncertainty for regions in phase space. Nonlinear

systems that possess multiple attractors typically can be

extremely sensitive with respect to the choice of initial con-

ditions. That is, very small changes, or uncertainty, in the

initial conditions can lead to different attractors.33–35 Sensi-

tivity here is measured in the asymptotic time limit. When

applied to high-dimensional attractors, long-time sensitivity

is measured with respect to parameter sensitivity.36 In con-

trast to the asymptotic definition, we measure uncertainty in

FIG. 3. (Color online) Forward FTLE flow field computed using the deter-

ministic form of Eqs. (1a)–(1c) and shown at phase w¼ 0. The integration

time is T¼ 20 with an integration step size of t¼ 0.1 and a grid resolution of

0.005 in both x and y.
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phase space with respect to perturbations in initial data by

computing exponential changes in distances over short time

intervals.

The sensitivity of the deterministic system to the initial

conditions is quantified by defining the pointwise uncertainty

measure. For a point in phase space (x0, y0) chosen at ran-

dom, a ball of radius � is constructed about that point, B�(x0,

y0). For N randomly chosen points in the ball B�(x0, y0), we

record the number of trajectories, N�(s, x0, y0), at time s, that

diverge beyond a certain distance from the trajectory of (x0,

y0). By diverge, we mean that we test if the distance between

the trajectories at a given time is greater than a threshold pa-

rameter. The test indicates the fraction of initial conditions

in the ball that diverge beyond a certain distance in a given

finite time. If there are multiple attractors present, as s!1,

then the uncertain points correspond to those points that go

to another basin. For finite s, as the radius of the ball is

decreased, one obtains more accurate approximations of the

basin boundary of the system. This is due to the fact that the

dynamics are most sensitive with respect to the choice of ini-

tial conditions when the points straddle the basin boundary

separating the basins of attraction.

Figure 4 shows a sample calculation of the uncertainty

measure for the fixed phase w¼ 0. In this calculation, a

200� 100 regular grid is used where each grid point coin-

cides with the center of a ball of radius 0.02. By comparing

the FTLE field shown in Fig. 3 with the uncertainty measure

shown in Fig. 4, one can see that the location of the FTLE

ridge is contained within the uncertainty region. In addition,

it should be noted that the uncertainty measure captures the

complicated fractal structure of the basin boundary shown in

Fig. 2, as radius � approaches zero. For the stochastic dou-

ble-gyre, it is expected that the regions defined by the uncer-

tain sets over all phases, w [ [0, 20), will be the most active

regions in which to actuate if one wishes to increase the resi-

dence time of a particle in one particular basin. We now

refine this notion in the discrete case by defining the actual

sets which will be almost invariant in the stochastic case.

One may think of the almost invariant sets as the comple-

ment of the most uncertain regions in phase space.

V. ALMOST INVARIANT SETS

As mentioned above, approximating the almost invariant

sets is another method that can quantify where particles loiter

in phase space for a stochastic system. Computation of the

almost invariant sets will be achieved using the stochastic

Frobenius–Perron operator. While the transition probabilities

can be approximated for continuous time,37 we take advant-

age of the fact that the double-gyre system is a periodically

forced system. Therefore, the dynamics are sampled at a par-

ticular phase of the period. For small noise, contributions to

the probability along trajectories come primarily from the

difference between the tangent vector and the vector field.

Averaging over a period of the drive allows one to sample

the noise periodically. In doing this, we assume that the noise

is not in the tail of the probability distribution so that there

are no large, rare events. We, therefore, construct a Poincaré

map with a specified noise distribution. This method of dis-

crete sampling quantitatively identifies the complement of

the uncertainty region as two almost invariant sets, which are

associated with the stable attractors of the associated deter-

ministic system. Although we present the machinery for a

fixed phase, it is possible to extend the analysis for all phases

of w, allowing one to approximate the density over the full

forcing period.

To be explicit, consider a stochastically perturbed map

Fg : Rn! Rn, x(t) ´ F(x(t))þ g, where g is a random vari-

able having the distribution m(x). Let F(x(t)) represent the

map on the Poincaré section which samples the flow at time

intervals of length s, equivalent to the period of the steady

states. The SFP operator for a normal distribution with mean

zero and standard deviation r is defined as38

PF½qðxÞ� ¼
1ffiffiffiffiffiffiffiffiffiffi

2pr2
p

ð
M

e�
jjðx�FðyÞÞjj2

2r2 qðyÞdy: (8)

One approximates the density q(x) by the finite sum of basis

functions, qðxÞ ’
PN

i¼1 ci/iðxÞ, where /iðxÞ ¼ vBi
ðxÞ, and

vB is an indicator defined on boxes fBigN
i¼1 covering the

region M. The SFP operator is approximated by the N�N
matrix,

Aij 	 AðBi;BjÞ ¼ ðPF½/j�;/iÞ ¼
ð

M

PF½/jðxÞ�/iðxÞdx (9)

for 1� i, j�N. Therefore, a transition matrix entry Aij value

represents how mass, or measure, flows from cell Bi to cell

Bj. Details of the method can be found in Ref. 39.

From the transition matrix, a reversible Markov chain is

constructed, satisfying piAij¼pjAji for all i, j. Such a condi-

tion implies p is an invariant (stationary) distribution of A.40

Since, in general, A is not reversible as it is defined in Eq.

(9), a reversible Markov chain is constructed from the transi-

tion matrix. Let R ¼ ðAþ ÂÞ=2, where Âij ¼ ðpj=piÞAji and

p is an invariant probability density of A. The matrix R now

possesses detailed balance.

Since R is reversible, it has the properties that its eigen-

values are real and the eigenvectors are orthogonal. One can

then compute a collection of sets which are almost invariant

by examining the eigenvectors of R. A gauge of how much

FIG. 4. (Color online) The uncertainty measure for the deterministic part of

Eqs. (1a)–(1c) for the phase w¼ 0. A 200 � 100 regular grid of initial condi-

tions is used. The color represents the fraction of trajectories that diverge

from the trajectory of the center of each ball tested. The computation was

performed using balls of radius �¼ 0.02 with 20 points chosen at random

within each ball. The trajectories were computed until time s¼ 400 using a

threshold parameter of 0.8.
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measure is ejected each iterate from the defined almost invari-

ant sets is given by the eigenvalues. The first few eigenvalues

of R will be clustered near unity and their associated eigen-

states will be a mixture of almost invariant sets formed from

the above basis elements. Since the first eigenvector of R is a

vector of ones, the second eigenvector is used to identify two

almost invariant sets emanating from basins of attraction. The

fact that the eigenvalues cluster near unity means that very lit-

tle mass is ejected from the basins each iterate, which is due

to the basins are defined as almost invariant states.

The results of the almost invariant sets computation are

shown in Fig. 5 for the Poincaré map of the double-gyre at

w¼ 0. The second eigenvector can be visualized by a roughly

piecewise constant function, with a transition region connect-

ing the two pieces. The eigenvalue associated with this eigen-

vector is 0.9996. The higher level represents the left basin

(red) and the lower level represents the right basin (blue). For

this computation, a 100� 100 grid of points is used with a

standard deviation of r¼ 0.05. As expected, the complement

set of the left and right almost invariant basins agrees approxi-

mately with the location of the uncertain region from Fig. 4.

VI. CORRAL CONTROL IN THE PRESENCE OF
FLUCTUATIONS

Since we have now computed the location of the LCS

and have approximated the most uncertain regions and almost

invariant regions of phase space, we can consider loitering, or

residence times, within a defined region. Moreover, we may

use actuation to control trajectories in the system by increas-

ing the loitering times within an almost invariant set. To quan-

tify the residence time of a particle in a basin, we consider the

double-gyre system with continuously added Gaussian noise.

As the standard deviation, r, of the noise is increased, trajec-

tories wander in larger neighborhoods about the stable steady

states and frequently switch from one basin to another, as

shown in Fig. 6. These basins are approximated by the almost

invariant sets at a fixed phase, shown in Fig. 5.

The control strategy employs a monitoring ball (that we

refer to as a control region) that covers the almost invariant

set with the center defined as the left nonboundary steady

state when time t¼ 0. When a trajectory passes beyond a

threshold distance from the center (xs, ys) of the control

region, a radial force is turned on. This force moves the tra-

jectory back toward the center of the region. This control

strategy can be modeled as

_x ¼ �pA sinðpf ðx; tÞÞ cosðpyÞ � axþ g1ðtÞ
� cðx� xsÞHðrðx; yÞ � r0Þ; (10a)

_y ¼ pA cosðpf ðx; tÞÞ sinðpyÞ df

dx
� ayþ g2ðtÞ

� cðy� ysÞHðrðx; yÞ � r0Þ; (10b)

f ðx; tÞ ¼ � sinðxtþ wÞx2 þ ð1� 2� sinðxtþ wÞÞx; (10c)

rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ2 þ ðy� ysÞ2

q
; (10d)

where c is the magnitude of the control force, r0 is the radial

threshold, and H is a Heaviside function. By adjusting r0 and

c, it is possible to control the number of actuations and the

effectiveness of the control scheme. We have designed this spe-

cific control strategy to take advantage of the underlying flow

structure in order to corral the particles into the almost invariant

set. We therefore refer to our scheme as corral control.

The control scheme is tested by observing the changes

in the almost invariant sets. Figure 7 shows the results of

approximating the almost invariant sets for the stochastic

FIG. 6. (Color online) A graph of the x� coordinate for two simulations of

the stochastic system given by Eqs. (1a)–(1c). For continuous noise with

standard deviation r¼ 0.005, one does not observe switching events (red).

However, for the larger standard deviation of r¼ 0.05, one can see frequent

switching between the two basins (black).

FIG. 5. (Color online) The results of approximating the almost invariant

sets for the stochastic system given by Eqs. (1a)–(1c) at the phase w¼ 0. A

100 � 100 grid of points is used with a standard deviation of r¼ 0.05.

Figure 5(a) is the mapping of the second eigenvector of the reversible matrix

back to the phase space. The almost invariant sets are represented by the red

and the blue regions at the ends of the eigenvector range. Figure 5(b) is the

contour plot of the surface, which shows the transition region that forms a

barrier between the almost invariant sets.
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system with control applied to the left basin given by

Eqs. (10a)–(10d) for c¼ 0.25. As expected, there is an

increase in the size of the left (red) almost invariant set and a

decrease in the size of the right (blue) almost invariant set

when compared to Fig. 5.

We have analyzed how individual trajectories escape

under this control algorithm. By measuring the most frequent

path of an escape event from the left basin to the right basin,

one can observe that the trajectories follow the FTLE ridge

toward a periodic saddle orbit on the x axis. Topologically,

the FTLE ridge loops around the almost invariant sets, cor-

ralling points in the outlying region to the other side. The

goal is to reduce the number of escape events by a control

algorithm that takes advantage of the topology of the system.

Figures 8(a)–(c) illustrate the topology (as does a movie

which can be found as auxiliary online material URL: http://

dx.doi.org/10.1063/1.3539836.1). In these figures, 20,000

particles were placed in the left basin near the fixed point

and their trajectories were tracked. If a particle crossed the

x¼ 1.2 threshold, the particle was considered to have

escaped from the left basin into the right basin. In Figs. 8(a)–

(c), the color contours show the probability density of the

trajectory path prehistory for all the particles (there are 4361

of them) that escaped from the left basin between phases w [
[0.65, 0.7). The prehistory shows that there are many paths

to escape. However, the high-probability density in the

region of the saddle [near the point (1, 0)] shows that most of

the particles have been funneled into the saddle region just

prior to escape from the left basin. Also shown in the figures

are the position of the particles (black dots) before escape,

the FTLE contour, and a circular region of radius r¼ 0.4 that

denotes the control region. These last three features are

shown at phase w¼ 0.0 in Fig. 8(a), at phase w¼ 0.25 in Fig.

8(b), and at w¼ 0.5 in Fig. 8(c). The control force used in

this simulation is c¼ 0.15.

Figure 8(a) shows that, although many particles are out-

side the control region, the majority of the particles are

inside the control region. For those particles that are inside

the control region, no control is being applied. In addition,

the majority of the particles lie on one side of the FTLE

ridge, which is bounding the almost invariant set (from

FIG. 7. (Color online) The results of approximating the almost invariant

sets for the stochastic system with control applied to the left basin given by

Eqs. (10a)–(10d) at the phase w¼ 0. A 100 � 100 grid of points with a

standard deviation of r¼ 0.05 is used. Similar to Fig. 5(a), this graph is the

mapping of the second eigenvector of the reversible matrix back to the

phase space. The almost invariant sets are represented by the red and the

blue regions at the ends of the eigenvector range. One can see that the Fig. 7

left basin (red) is larger than the Fig. 5(a) left basin, while the Fig. 7 right

basin (blue) is smaller than the Fig. 5(a) right basin.

FIG. 8. (Color online) Probability density of the trajectory path prehistory for

particles that escaped from the left basin based on a threshold of x¼ 1.2 between

phases w [[0.65, 0.7). These paths form a subset of 20000 random particle simu-

lations. Also shown is the position of the particles (black dots) before escape,

the FTLE ridge (black curve), and the control region of radius r¼ 0.4 (red) at

(a) phase w¼ 0.0, (b) phase w¼ 0.25, and (c) phase w¼ 0.5. The control force

is c¼ 0.15 (enhanced online). [URL: http://dx.doi.org/10.1063/1.3539836.1]
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comparison with Fig. 5). As time evolves, one can see in

Fig. 8(b) that the FTLE ridge sweeps up the left side of the

figure, and one can see from the prehistory that about half of

the particles sweep up the left side, staying on the exterior

side of the FTLE ridge outside the control region so that the

control is actuated. The other half of the particles remain on

the interior side of the FTLE ridge inside the control region

so that no control is actuated.

Eventually, as can be seen in Fig. 8(c), the FTLE ridge

enters the region of uncertainty (see Fig. 5), and all the par-

ticles cross over the FTLE ridge. All the particles now have

left the control region. However, even though the control is

being actuated, it cannot overcome the underlying dynamics

found in this system and all the particles will proceed toward

the saddle and finally escape. To prevent escape and to

increase loitering time, one can use the knowledge of the loca-

tion of the FTLE ridge, uncertainty regions and almost invari-

ant sets to design a control region. For example, by choosing a

control region with a smaller radius, one can prevent the par-

ticles from approaching the FTLE ridges and uncertain areas.

With such a small radius, however, the number of control

actuations will be very large. Control actuation may be opti-

mized by using a control region with the largest possible radius

so that the region does not intersect the FTLE structures.

A. Scaling of the mean escape time with respect to
noise and control

We vary the control parameter, c, to study its effect on

the mean escape time. One expects that an increase in c will

lead to a corresponding increase in the mean time to escape.

Note that since the control force is finite, there is always a fi-

nite probability of escape even if control is actuated. The

control algorithm decreases the probability of trajectories

visiting the regions that have a high probability of transition,

and the mean time to escape reflects the decrease in PDF in

the transition regions.

Figure 9(a) shows the natural log of the average escape

time as a function of the inverse of the noise intensity. One

can see that as the control force is increased, the mean time

to escape increases with the slope depending linearly on the

control parameter. Since small changes in c translate into ex-

ponential changes in residence times, one recovers a linear

relation of the slope of the exponent as a function of c which

can be seen in Fig. 9(b).

B. Optimizing control actuations

Another consideration is that one would like to mini-

mize the number of actuations for the particle, thereby pre-

serving the energy needed to employ the control scheme. As

a consequence, this could extend the use of a battery in an

autonomous underwater glider. Figure 10 shows the natural

log of the average number of actuations per unit time as a

function of the control radius. For r� 0.36, the FTLE ridge

does not intersect the control region and the average number

of actuations follows the scaling of the average escape time.

Beyond that, the number of actuations increases as the con-

trol scheme works to move the trajectory back inside the

control region. Therefore, the number of actuations per unit

time follows the average escape rate for r� 0.36 and the

minimum number of actuations can be found for the largest

control region inside the FTLE ridge.

C. One-dimensional analysis of control

To understand the effectiveness of the control scheme and

its scaling properties, we approximate the natural probability

FIG. 9. (Color online) (a) Natural log of the average escape time as a func-

tion of the inverse of the noise intensity. The control radius is r¼ 0.4 and a

threshold of x¼ 1.2 is used to identify escape from the left basin. The results

are averaged over 1000 simulations and the slopes of the linear fit to each

data set are noted on the right. (b) The slopes of the average escape time lin-

ear fits from Fig. 9(a) as a function of the control parameter c.

FIG. 10. (Color online) Natural log of the average number of actuations per

unit time as a function of the control radius for parameters r¼ 0.075 and

c¼ 0.25. The mean number of actuations (*) was calculated over 100 simu-

lations of time series with t� 105, or until an escape event occurred. The

error bars show one standard deviation of the data from the mean. Overlaid

is a linear fit for the data points r� 0.36, since for this range of r the control

region does not intersect the FTLE ridge.

013116-8 Forgoston et al. Chaos 21, 013116 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



density function (PDF) and the almost invariant set in the fol-

lowing 1D example. Consider a stochastic system, where the

deterministic part has a stable focus at the origin surrounded

by an unstable limit cycle. In the associated deterministic

system, the points inside the limit cycle would spiral toward

the stable focus, while the points outside would diverge. The

stochastic perturbations allow trajectories to escape across the

limit cycle (and then diverge), creating an almost invariant set.

This captures the local behavior in one basin of the double-

gyre. Now consider a control region with radius �> 0, where

� determines the distance from the attractor for which the con-

trol is actuated. Then the system has the form

d

dt

x
y

� �
¼ �k x
�x �k

� �
x
y

� �
þ k

x
y

� �
ðx2 þ y2Þ

� cHðr � �Þ x
y

� �
þ gðtÞ; (11)

where k, x> 0. As before, c is the magnitude of the control

force and H is a Heaviside function. Each component of

g(t)¼ [g1(t), g2(t)]T is a random variable with intensity D.

To find the PDF, we switch to polar coordinates using

the time-dependent change of variables given by x¼ r cosh
and y¼ r sinh. This results in the following transformed

stochastic system:

_r ¼ krðr2 � 1Þ � crHðr � �Þ þ g1ðtÞ cos xt� g2ðtÞ sin xt:

(12)

Here, we find that h¼�xt and the noise vanishes entirely

from the h equation.

Assuming the transformed noise term still has intensity

D and j is a normalization constant, the probability density

q(r), is given by

qðrÞ ¼ j exp
k

4D
ðr2ðr2 � 2ÞÞ � c

2
ðr2 � �2ÞHðr � �Þ

� �
:

(13)

The PDF is now fully specified by the deterministic flow and

noise drift, control strength, and actuation region, and can be

plotted for various parameters.

Figure 11 shows that an increase in the control strength

decreases the probability of the trajectory moving outside

the boundary of the control region. The inset figure shows

that the local minimum of the PDF occurs at r¼ 1, which is

the location of the unstable limit cycle. The PDFs branch at

the point of control at r¼ 1.5. The thick solid curve repre-

sents the dynamics with no control. It follows that a trajec-

tory escaping outside the limit cycle will diverge to infinity,

and the PDF increases as the value of r increases.

In addition, one can perform the one-dimensional almost

invariant set analysis for this example. The transport matrix is

computed using a grid of 500 intervals on the domain and

Gaussian noise with standard deviation of r¼ 0.1. The point

of control is located at r¼ 0.9, to the left of the basin bound-

ary at r¼ 1. Figure 12(a), shows the expansion of the left

almost invariant set to the right as the control is increased.

This information is contained in the second eigenvector of the

transport matrix. The lower and upper almost constant regions

of the function represent location of the sets. Figure 12(b)

shows the movement of the transport region to the right as

the control is increased. This information is contained in

the third eigenvector of the transport matrix. The maximum

FIG. 11. (Color online) PDF as a function of the control radius r for varying

control force c found using Eq. (13). Continuous noise is used with r¼ 1,

k¼ 0.1, and �¼ 1.5. The normalization constant, j, was set in each case so

that the area under the curve is one. The inset shows a close-up of the PDF

near the attractor for the case of no control.

FIG. 12. (Color online) The results of the almost invariant set analysis for

varying control force c in Eq. (12) with k¼ 0.1, �¼ 0.9, and Gaussian noise

with standard deviation of r¼ 0.1. Figure 12(a) shows the almost invariant

set for varying control force c. The second eigenvector of the transport ma-

trix is mapped back to the domain r. Note that as c increases, the right basin

extends to the right. Figure 12(b) shows the transition set for varying control

force c. The third eigenvector of the transport matrix is mapped back to the

domain r. Note that as c increases, the transition region moves to the right.
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value of the function represents the location of the transition

region. Notice that it is the complement of the almost invari-

ant sets.

Both the PDF and almost invariant set analysis demon-

strate the change that the control algorithm has on the natural

dynamics of the stochastic system. The control algorithm

decreases the probability of trajectories visiting regions

where deterministic dynamics would cause them to diverge.

This moves the effective basin boundary farther from the

attractor, increasing its size. By using sufficient control ra-

dius and force, any trajectory that would naturally diverge

can be redirected toward the attractor. Therefore, the almost

invariant set can be expanded to the desired size at a cost of

the number of control actuations.

Additionally, it is possible to quantify the relation

between the mean escape time and the potential defined by

the PDF. Using the well-known Kramer’s escape rate,41 one

can predict the rate at which a particle can escape over a

potential barrier under Brownian motion. In one dimension,

the escape time of a particle from a potential defined by

U(x) is s ¼ ð2p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ðxaÞjU00ðxf Þj

p
Þ exp½ðUðxf Þ � UðxaÞÞ=D�,

where xa is the location of the attractor and xf is the location

of the escape point. From the radial control PDF given by

Eq. (13), one can see that the potential function exponent

depends linearly on the control amplitude c. All of these

one-dimensional analytic results are consistent with the

behavior seen for the double-gyre system with control that

was presented in the preceding subsections.

VII. CONCLUSIONS

Using modern dynamical systems theory, we have ana-

lyzed the flow of a stochastic double-gyre as a model of a

wind-driven ocean. The existence of multiple almost invari-

ant sets combined with highly uncertain regions in phase

space gives rise to stochastic switching between the basins.

The uncertain regions generate high-probability transition

sets which are the primary cause of switching from one basin

to another. We showed that the high probability of transi-

tions may be approximated by computing uncertain regions

with respect to initial conditions and the use of FTLE.

The system displays maximum sensitivity near the

deterministic basin boundary trajectory. Knowledge of the

FTLE ridges in a given flow, in conjunction with knowledge

of uncertain regions and almost invariant sets, enables one to

predict the location of escape trajectories from one basin to

another. As in previous work,42 these transition regions may

be monitored directly to predict future switching events.

This knowledge, in turn, allows for set-based corral control

methods to be used to inhibit the escape event and increase

the loitering time within the basin.

Almost invariant sets were computed explicitly using

the Frobenius–Perron theory for discrete stochastic systems.

The sets provided approximate target regions in which to

control particles which act as sensors in large surveillance

regions. That is, given initial conditions in one of the almost

invariant basins, the particles will stay in the sets for long,

but finite time. Although computed for a discrete map model,

the sets approximate well the continuous noise almost invari-

ant sets. They also form sets of the most certain points in

that they are the complement of the uncertain region, which

was computed based on initial condition uncertainty.

Since the almost invariant sets are indicative of long-

time, but finite, dynamics, we used these sets or subsets to

define corral control regions in which we wish to maintain

the residence times in one basin with minimal control actua-

tion. To this end, we designed a simple discrete controller to

extend the residence times in the continuous noise double-

gyre. We find that even small control amplitudes have an

exponential increase on the residence times. This is quite

similar to the well-known problem of noise-induced escape

from a potential well, even though the basin boundaries may

be fractal in the deterministic case.

We saw that if the control radius defined a set which did

not intersect the ridges defined by the FTLE, the number of

actuations per unit time followed an exponential law as a

function of noise intensity. This can be understood com-

pletely from the switching rate theory. On the other hand, if

the control radius intersected the FTLE ridge, the uncertainty

regions were breached, and the control actuation rate no lon-

ger follows a nice scaling law, but rather some complicated

function of control radius r.

The model presented here is a simplified version of a dou-

ble-gyre flow that is a solution to a realistic quasi-geostrophic

ocean model, and the vehicles controlled are point particles.

However, the techniques here can be extended to full ocean

and glider models in the future. The extensions to vehicles

with real mass means that inertial effects will need to be

included in 3D GFD models. However, the machinery pre-

sented here is well-suited to the description of sets in higher

dimensions, and we expect that the monitoring of large sur-

veillance regions in the ocean by gliders will be enhanced by

implementing our corral control method. Additionally, the

study and control of coupled systems, with and without delay,

is of interest.
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APPENDIX: DETAILS OF THE OCEAN MODEL

The ocean model results in Fig. 1 were obtained by

numerical solution of barotropic quasi-geostrophic flow in a

single-layer basin X :¼ [0, 1]� [0, 1] on a b plane. The gov-

erning nondimensionalized equation for the fluid streamfunc-

tion W is

@r2W
@t
þ �JðW;r2WÞ þ @W

@x
¼ lr2WþW; (A1)

where J is the Jacobian operator,

Jðf ; gÞ :¼ @f

@x

@g

@y
� @g

@x

@f

@y
; (A2)
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and forcing is provided by a wind-stress curl, W, that is pre-

scribed as follows to form a double-gyre circulation with a

weak periodic “seasonal” variation:

W ¼ � sin 2pyþ 2ap sin xt; (A3)

where the amplitude a¼ 0.1 and frequency x¼ 3 were used

to produce Fig. 1.

This system is characterized by the nondimensional

parameters43

l ¼ R

bL
and � ¼ U

bL2
; (A4)

where b is the rotation parameter, R is the bottom friction

and L and U are, respectively, the characteristic length and

velocity scales of the basin. The parameters l and � corre-

spond to the relative length scales of the Stommel and iner-

tial layers, respectively. To produce Fig. 1, we used l¼ 0.04

and �¼ 0.0004.

The above model has been numerically integrated using

second-order spatial differences and second-order Runge-

Kutta time stepping for the streamfunction, and a fourth-order

Runge-Kutta algorithm to compute the Lagrangian trajecto-

ries of tracer particles. In Fig. 1, a grid of resolution 642 was

used and a dimensionless time step of dt¼ 0.001. Coordinates

of tracer particles are independent of the grid while flow

velocities at the particle locations are found using bilinear

interpolation from the grid values. An initially static ocean

spins-up in a few hundred time steps. If a¼ 0 the spun-up so-

lution is stationary, while nonzero a leads to a superimposed

oscillatory behavior. The tracers are held in place until spin-

up is complete.

1.J. Harlim, M. Oczkowski, J. A. Yorke, E. Kalnay, and B. R. Hunt, Phys.

Rev. Lett. 94, 228501(2005).
2D. C. Webb, P. J. Simonetti, and C. P. Jones, IEEE J. Ocean. Eng. 26, 447

(2001).
3J. Sherman, R. E. Davis, W. B. Owens, and J. Valdes, IEEE J. Ocean. Eng.

26, 437 (2001).
4C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin,

J. W. Ballard, and A. M. Chiodi, IEEE J. Ocean. Eng. 26, 424 (2001).
5M. Weldon, T. Peacock, G. Jacobs, M. Helu, and G. Haller, J. Fluid Mech.

611, 1 (2008).

6E. Villermaux, P. Marmottant, and J. Duplat, Phys. Rev. Lett. 92, 074501

(2004).
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