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We consider a stochastic susceptible-exposed-infected-recovered �SEIR� epidemiological model.
Through the use of a normal form coordinate transform, we are able to analytically derive the
stochastic center manifold along with the associated, reduced set of stochastic evolution equations.
The transformation correctly projects both the dynamics and the noise onto the center manifold.
Therefore, the solution of this reduced stochastic dynamical system yields excellent agreement,
both in amplitude and phase, with the solution of the original stochastic system for a temporal scale
that is orders of magnitude longer than the typical relaxation time. This new method allows for
improved time series prediction of the number of infectious cases when modeling the spread of
disease in a population. Numerical solutions of the fluctuations of the SEIR model are considered
in the infinite population limit using a Langevin equation approach, as well as in a finite population
simulated as a Markov process. © 2009 American Institute of Physics. �doi:10.1063/1.3247350�

The reduction in high-dimensional, stochastic systems is
an important and fundamental problem in nonlinear dy-
namical systems. In this article, we present a general
theory of stochastic model reduction, which is based on a
normal form coordinate transform. This nonlinear, sto-
chastic projection allows for the deterministic and sto-
chastic dynamics to interact correctly on the lower-
dimensional manifold so that the dynamics predicted by
the reduced, stochastic system agrees well with the dy-
namics predicted by the original, high-dimensional sto-
chastic system. Although the method may be applied to
any physical or biological system with well-separated
time scales, here we apply the method to an epidemiologi-
cal model. We show that when compared with the origi-
nal stochastic epidemic model, the reduced model prop-
erly captures the initial and recurrent disease outbreaks,
both in amplitude and phase. This long-term accuracy of
the reduced model allows for the application of effective
disease control where phase differences between outbreak
times and vaccine controls are important. Additionally, in
practice, one can only measure the number of infectious
individuals in a population. Our method allows one to
predict the number of unobserved exposed individuals
based on the observed number of infectious individuals.

I. INTRODUCTION

The interaction between deterministic and stochastic ef-
fects in population dynamics has played, and continues to
play, an important role in the modeling of infectious dis-
eases. The mechanistic modeling side of population dynam-
ics is well known and established.1,2 These models typically
are assumed to be useful for infinitely large, homogeneous

populations, and arise from the mean field analysis of proba-
bilistic models. On the other hand, when one considers finite
populations, random interactions give rise to internal noise
effects, which may introduce new dynamics. Stochastic ef-
fects are quite prominent in finite populations, which can
range from ecological dynamics3 to childhood epidemics in
cities.4,5 For homogeneous populations with seasonal forc-
ing, noise also comes into play in the prediction of large
outbreaks.6–8 Specifically, external random perturbations
change the probabilistic prediction of epidemic outbreaks as
well as its control.9

When geometric structure is applied to the population,
the interactions are modeled as a network.10,11 Many types of
static networks which support epidemics have been consid-
ered. Some examples include small world networks,12 hier-
archical networks,13 and transportation networks of patch
models.14 In addition, the fluctuation of epidemics on adap-
tive networks, where the wiring between nodes changes in
response to the node information, has been examined.15 In
adaptive network models, even the mean field can be high
dimensional, since nodes and links evolve in time and must
be approximated as an additional set of ordinary differential
equations.

Another aspect of epidemic models, which is often of
interest, involves the inclusion of a time delay. The delay
term makes the analysis significantly more complicated.
However, it is possible to approximate the delay by creating
a cascade consisting of a large number of compartments.16

For example, one could simulate the delay associated with a
disease exposure time with several hundred “exposed” com-
partments.

These model examples are just a few of the types of very
high-dimensional models that are currently of interest. As a
result of the high dimensionality, there is much computation
involved, and the analysis is quite difficult. In particular,
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real-time computation is not currently possible. However,
there are usually many time scales that are well separated
�due typically to a large range in order of magnitude of the
parameters� when considering such high-dimensional prob-
lems. In the presence of well-separated time scales, a model
reduction method is needed to examine the dynamics on a
lower-dimensional space. It is known that deterministic
model reduction methods may not work well in the stochas-
tic realm, which includes epidemic models.17 The purpose of
this article is to examine a method of nonlinear, stochastic
projection so that the deterministic and stochastic dynamics
interact correctly on the lower-dimensional manifold and
predict correctly the dynamics when compared with the full
system. Because the noise affects the timing of outbreaks, it
is essential to produce a low-dimensional system that cap-
tures the correct timing of the outbreaks as well as the am-
plitude and phase of any recurrent behavior.

We will demonstrate that our stochastic model reduction
method properly captures the initial disease outbreak and
continues to accurately predict the outbreaks for time scales,
which are orders of magnitude longer than the typical relax-
ation time. Furthermore, in practice, real disease data include
only the number of infectious individuals. Our method al-
lows us to predict the number of unobserved exposed indi-
viduals based on the observed number of infectious individu-
als.

For stochastic model reduction, there exist several poten-
tial methods for general problems. For a system with certain
spectral requirements, the existence of a stochastic center
manifold was proven in Ref. 18. Nonrigorous stochastic nor-
mal form analysis �which leads to the stochastic center mani-
fold� was performed in Refs. 19–22. Rigorous theoretical
analysis of normal form coordinate transformations for sto-
chastic center manifold reduction was developed in Refs. 23
and 24. Later, another method of stochastic normal form re-
duction was developed,25 in which any anticipatory convolu-
tions �integrals into the future of the noise processes� that
appeared in the slow modes were removed. Since this latter
analysis makes the construction of the stochastic normal
form coordinate transform more transparent, we use this
method to derive the reduced stochastic center manifold
equation.

Figure 1 shows a schematic demonstrating our approach
to the problem. We consider a high-dimensional system
along with its corresponding reduced low-dimensional sys-
tem. In this article, two types of low-dimensional system are

discussed: a reduced system based on deterministic center
manifold analysis and a reduced system based on a stochastic
normal form coordinate transform. Regardless of the type of
low-dimensional system being considered, a common noise
is injected into both the high-dimensional and low-
dimensional models, and an analysis of the solutions found
using the high and low-dimensional systems is performed.

In this article, as a first study of a high-dimensional sys-
tem, we consider the susceptible-exposed-infected-recovered
�SEIR� epidemiological model with stochastic forcing. As
previously mentioned, we could easily consider a SEIR-type
model where the exposed class was modeled using hundreds
of compartments. Since the analysis is similar, we consider
the simpler standard SEIR model to demonstrate the power
of our method. Section II provides a complete description of
this model. Section III describes how to transform the deter-
ministic SEIR system to a new system that satisfies the spec-
tral requirements needed to apply the center manifold theory.
After the theory is used to find the evolution equations that
describe the dynamics on the center manifold, we show in
Sec. IV how the reduced model that is found using the de-
terministic result incorrectly projects the noise onto the cen-
ter manifold. Section V demonstrates the use of a stochastic
normal form coordinate transform to correctly project the
noise onto the stochastic center manifold. A discussion and
the conclusions are contained, respectively, in Secs. VI and
VII.

II. THE SEIR MODEL FOR EPIDEMICS

We begin by describing the stochastic version of the
SEIR model found in Ref. 26. We assume that a given popu-
lation may be divided into the following four classes that
evolve in time:

�1� Susceptible class s�t� consists of those individuals who
may contract the disease.

�2� Exposed class e�t� consists of those individuals who
have been infected by the disease but are not yet infec-
tious.

�3� Infectious class i�t� consists of those individuals who are
capable of transmitting the disease to susceptible indi-
viduals.

�4� Recovered class r�t� consists of those individuals who
are immune to the disease.

Furthermore, we assume that the total population size,
denoted as N, is constant and can be normalized to
S�t�+E�t�+ I�t�+R�t�=1, where S�t�=s�t� /N, E�t�=e�t� /N,
I�t�= i�t� /N, and R�t�=r�t� /N. Therefore, the population
class variables S, E, I, and R represent fractions of the total
population. The governing equations for the stochastic SEIR
model are

Ṡ�t� = � − �I�t�S�t� − �S�t� + �1�1�t� , �1a�

Ė�t� = �I�t�S�t� − �� + ��E�t� + �2�2�t� , �1b�

İ�t� = �E�t� − �� + ��I�t� + �3�3�t� , �1c�

High−Dimensional

System

Noise

Common

Associated

Low−Dimensional

System

FIG. 1. Schematic demonstrating the injection of a common noise into both
the high-dimensional system and its associated low-dimensional system.
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Ṙ�t� = �I�t� − �R�t� + �4�4�t� , �1d�

where �i is the standard deviation of the noise intensity
Di=�i

2 /2. Each of the noise terms �i describes a stochastic,
Gaussian white force that is characterized by the correlation
functions

��i�t�� = 0, �2a�

��i�t�� j�t��� = ��t − t���ij . �2b�

Additionally, � represents a constant birth and death
rate, � is the contact rate, � is the rate of infection, so that
1 /� is the mean latency period, and � is the rate of recovery,
so that 1 /� is the mean infectious period. Although the con-
tact rate � could be given by a time-dependent function �e.g.,
due to seasonal fluctuations�, for simplicity, we assume � to
be constant. Throughout this article, we use the following
parameter values: �=0.02�yr�−1, �=1575.0�yr�−1, �
=1 /0.0279�yr�−1, and �=1 /0.01�yr�−1. Disease parameters
correspond to typical measles values.26,27 Note that any other
biologically meaningful parameters may be used as long as
the basic reproductive rate R0=�� / ���+����+����1. The
interpretation of R0 is the number of secondary cases pro-
duced by a single infectious individual in a population of
susceptibles in one infectious period.

As a first approximation of stochastic effects, we have
considered additive noise. This type of noise may result from
migration into and away from the population being
considered.28 Since it is difficult to estimate fluctuating mi-
gration rates,29 it is appropriate to treat migration as an arbi-
trary external noise source. Also, fluctuations in the birth rate
manifest itself as additive noise. Furthermore, as we are not
interested in extinction events in this article, it is not neces-
sary to use multiplicative noise. In general, for the problem
considered here, it is possible that a rare event in the tail of
the noise distribution may cause one or more of the S, E, and
I components of the solution to become negative. In this
article, we will always assume that the noise is sufficiently
small so that a solution remains positive for a long enough
time to gather sufficient statistics. Even though it is difficult
to accurately estimate the appropriate noise level from real
data, our choices of noise intensity lie within the huge con-
fidence intervals computed in Ref. 29. The case for multipli-
cative noise will be considered in a separate paper.

Although S+E+ I+R=1 in the deterministic system, one
should note that the dynamics of the stochastic SEIR system
will not necessarily have all of the components sum to unity.
However, since the noise has zero mean, the total population
will remain close to unity on average. Therefore, we assume
that the dynamics is sufficiently described by Eqs. �1a�–�1c�.
It should be noted that even if E�t�+ I�t�=0 for some t, the
noise allows for the reemergence of the epidemic.

III. DETERMINISTIC CENTER MANIFOLD ANALYSIS

One way to reduce the dimension of a system of equa-
tions is through the use of deterministic center manifold
theory. In general, a nonlinear vector field can be trans-
formed so that the linear part �Jacobian� of the vector field
has a block diagonal form where the first matrix block has

eigenvalues with positive real part, the second matrix block
has eigenvalues with negative real part, and the third matrix
block has eigenvalues with zero real part.30,31 These blocks
are associated, respectively, with the unstable eigenspace, the
stable eigenspace, and the center eigenspace. If we suppose
that there are no eigenvalues with positive real part, then
orbits will rapidly decay to the center eigenspace.

In order to make use of the center manifold theory, we
must transform Eqs. �1a�–�1c� to a new system of equations
that has the necessary spectral structure. The theory will al-
low us to find an invariant center manifold passing through
the fixed point to which we can restrict the transformed sys-
tem. Details regarding the transformation can be found in
Sec. III A, and the computation of the center manifold can be
found in Sec. III B.

A. Transformation of the SEIR model

Our analysis begins by considering the governing equa-
tions for the stochastic SEIR model given by Eqs. �1a�–�1c�.
We neglect the �i�i�t� terms in Eqs. �1a�–�1c� so that we are
considering the deterministic SEIR system. This determinis-
tic system has two fixed points. The first fixed point is

�Se,Ee,Ie� = �1,0,0� �3�

and corresponds to a disease free or extinct equilibrium state.
The second fixed point corresponds to an endemic state and
is given by

�S0,E0,I0� = � �� + ���� + ��
��

,
�

� + �

−
��� + ��

��
,

��

�� + ���� + ��
−

�

�
� . �4�

To ease the analysis, we define a new set of variables, S̄,

Ē, and Ī, as S̄�t�=S�t�−S0, Ē�t�=E�t�−E0, and Ī�t�= I�t�− I0.
These new variables are substituted into Eqs. �1a�–�1c�.

Then, treating � as a small parameter, we rescale time
by letting t=�	. We may then introduce the following res-
caled parameters: �=�0 /� and �=�0 /�, where �0 and �0

are O�1�. The inclusion of the parameter � as a new state
variable means that the terms in our rescaled system which
contain � are now nonlinear terms. Furthermore, the system
is augmented with the auxiliary equation d� /d	=0. The ad-
dition of this auxiliary equation contributes an extra simple
zero eigenvalue to the system and adds one new center di-
rection that has trivial dynamics. The shifted and rescaled
augmented system of equations is

dS̄

d	
= − ��ĪS̄ −

��0 + �2���0 + �2�
�0

Ī

−
�0�3�

��0 + �2���0 + �2�
S̄ , �5a�
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dĒ

d	
= ��ĪS̄ +

��0 + �2���0 + �2�
�0

Ī

+
�2��0�� − ��0 + �2���0 + �2��

��0 + �2���0 + �2�
S̄ − ��0 + �2�Ē ,

�5b�

dĪ

d	
= �0Ē − ��0 + �2�Ī , �5c�

d�

d	
= 0, �5d�

where the endemic fixed point is now located at the origin.
The Jacobian of Eqs. �5a�–�5d� is computed to zeroth

order in � and is evaluated at the origin. Ignoring the �
components, the Jacobian has only two linearly independent
eigenvectors. Therefore, the Jacobian is not diagonalizable.
However, it is possible to transform Eqs. �5a�–�5c� to a block
diagonal form with the eigenvalue structure that is needed to
use the center manifold theory. We use a transformation ma-
trix P consisting of the two linearly independent eigenvec-
tors of the Jacobian along with a third vector chosen to be
linearly independent. There are many choices for this third
vector; our choice is predicated on keeping the vector as
simple as possible. This transformation matrix is given as

P = 	
1 1 0

−
�0 + �0

�0
0 0

�0 + �0

�0
0 1
 . �6�

Using the fact that �S̄ , Ē , Ī�T=P · �U ,V ,W�T, then the transfor-
mation matrix leads to the following definition of new vari-
ables: U, V, and W,

U =
− �0

�0 + �0
Ē , �7a�

V = S̄ +
�0

�0 + �0
Ē , �7b�

W = Ī + Ē . �7c�

The application of the transformation matrix to Eqs.
�5a�–�5c� leads to the transformed evolution equations given
by

dU

d	
= − �0U +

�2��0V − �0U�
�0 + �0

−
��0 + �2���0 + �2����0 + �0�U + �0W�

�0��0 + �0�

−
��

�0 + �0
��0W + ��0 + �0�U

+
�2�0�0

��0 + �2���0 + �2���U + V� , �8a�

dV

d	
= �0U −

�2��0V − �0U�
�0 + �0

−
��0 + �2���0 + �2����0 + �0�U + �0W�

�0��0 + �0�

−
���0

�0��0 + �0���0W + ��0 + �0�U

+
�2�0�0

��0 + �2���0 + �2���U + V� , �8b�

dW

d	
= − �0U − ��0 + �2��U + W�

+
��0 + �2���0 + �2����0 + �0�U + �0W�

�0�0
− �2V

+
��

�0
��0W + ��0 + �0�U +

�2�0�0

��0 + �2���0 + �2��

�U + V� , �8c�

d�

d	
= 0. �8d�

B. Center manifold equation

The Jacobian of Eqs. �8a�–�8d� to zeroth order in � and
evaluated at the origin is

	
− ��0 + �0� 0 −

�0
2

��0 + �0�
0

0 0 −
�0�0

��0 + �0�
0

0 0 0 0

0 0 0 0


 , �9�

which shows that Eqs. �8a�–�8d� may be rewritten in the
form

dx

d	
= Ax + f�x,y,�� , �10�

dy

d	
= By + g�x,y,�� , �11�

d�

d	
= 0, �12�

where x= �U�, y= �V ,W�, A is a constant matrix with eigen-
values that have negative real parts, B is a constant matrix
with eigenvalues that have zero real parts, and f and g are
nonlinear functions in x, y, and �. In particular,

A = �− ��0 + �0��, B = 	0 −
�0�0

��0 + �0�
0 0


 . �13�
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Therefore, the system will rapidly collapse onto a lower-
dimensional manifold given by center manifold theory.32

Furthermore, we know that the center manifold is given by

U = h�V,W,�� , �14�

where h is an unknown function.
Substitution of Eq. �14� into Eq. �8a� leads to the follow-

ing center manifold condition:

�h�V,W,��
�V

dV

d	
+

�h�V,W,��
�W

dW

d	

= − �0h�V,W,�� +
�2��0V − �0h�V,W,���

�0 + �0

−
��0 + �2���0 + �2����0 + �0�h�V,W,�� + �0W�

�0��0 + �0�

−
��

�0 + �0
��0W + ��0 + �0�h�V,W,��

+
�2�0�0

��0 + �2���0 + �2���h�V,W,�� + V� . �15�

In general, it is not possible to solve the center manifold
condition for the unknown function h�V ,W ,��. Therefore,
we perform the following Taylor series expansion of
h�V ,W ,�� in V, W, and �:

h�V,W,�� = h0 + h2V + h3W + h�� + h22V
2 + h23VW

+ h33W
2 + h�2�V + h�3�W + h���2 + ¯ ,

�16�

where h0, h2, h3, h�, ¯ are unknown coefficients that are
found by substituting the Taylor series expansion into the
center manifold condition and equating terms of the same
order. By carrying out this procedure using a second-order
Taylor series expansion of h, the center manifold equation is

U = −
�0

2

��0 + �0�2W + O��3� , �17�

where �= ��V ,W ,��� so that � provides a count of the number
of V, W, and � factors in any one term. Substitution of Eq.
�17� into Eqs. �8b� and �8c� leads to the following reduced
system of evolution equations, which describe the dynamics
on the center manifold

dV

d	
= −

�2�0
2�0W

��0 + �0�3 −
�4�0W

��0 + �0�2 −
�0�2V

�0 + �0
−

��0 + �2��0W

�0 + �0

−
��0

2�

��0 + �0�2�W +
�2��0 + �0�

��0 + �2���0 + �2��

�V −

�0
2W

��0 + �0�2� , �18a�

dW

d	
=

�2�0
2W

��0 + �0�2 +
�4W

�0 + �0
− �2V +

���0

�0 + �0


�W +
�2��0 + �0�

��0 + �2���0 + �2���V −
�0

2W

��0 + �0�2� . �18b�

IV. INCORRECT PROJECTION OF THE NOISE
ONTO THE STOCHASTIC CENTER MANIFOLD

A. Transformation of the stochastic SEIR model

We now return to the stochastic SEIR system given by
Eqs. �1a�–�1c�. The shift in the fixed point to the origin will
not have any effect on the noise terms, so that the stochastic
version of the shifted equations is

Ṡ̄�t� = − �ĪS̄ −
�� + ���� + ��

�
Ī −

���

�� + ���� + ��
S̄ + �1�1�t� ,

�19a�

Ė̄�t� = �ĪS̄ +
�� + ���� + ��

�
Ī +

���� − �� + ���� + ���
�� + ���� + ��

S̄

− �� + ��Ē + �2�2�t� , �19b�

İ̄�t� = �Ē − �� + ��Ī + �3�3�t� . �19c�

As Eqs. �19a�–�19c� are transformed using Eqs.
�7a�–�7c�, the �=�0 /� scaling, the �=�0 /� scaling, and the
t=�	 time scaling, the noise also is scaled so that the sto-
chastic transformed equations are given by

dU

d	
= − �0U +

�2��0V − �0U�
�0 + �0

−
��0 + �2���0 + �2����0 + �0�U + �0W�

�0��0 + �0�

−
��

�0 + �0
��0W + ��0 + �0�U

+
�2�0�0

��0 + �2���0 + �2���U + V� + �4�4, �20a�

dV

d	
= �0U −

�2��0V − �0U�
�0 + �0

−
��0 + �2���0 + �2����0 + �0�U + �0W�

�0��0 + �0�

−
���0

�0��0 + �0���0W + ��0 + �0�U

+
�2�0�0

��0 + �2���0 + �2���U + V� + �5�5, �20b�

dW

d	
= − �0U − ��0 + �2��U + W�

+
��0 + �2���0 + �2����0 + �0�U + �0W�

�0�0
− �2V

+
��

�0
��0W + ��0 + �0�U +

�2�0�0

��0 + �2���0 + �2��

�U + V� + �6�6, �20c�

where
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�4�4 = −
��0

�0 + �0
�2�2, �21a�

�5�5 = ��1�1 +
��0

�0 + �0
�2�2, �21b�

�6�6 = ��2�2 + ��3�3. �21c�

The stochastic terms �4, �5, and �6 in Eqs. �20a�–�20c� are
still additive Gaussian noise processes. However, Eqs.
�21a�–�21c� show how the transformation has acted on the
original stochastic terms �1, �2, and �3 to create new noise
processes, which have a variance different from that of the
original noise processes. Also note that we have suppressed
the argument of �4, �5, and �6 in Eqs. �20a�–�20c�. The time
scaling means that these noise terms should be evaluated at
�	.

The system of equations given by Eqs. �20a� and �21c� is
an exact transformation of the system of equations given by
Eqs. �1a�–�1c�. We numerically integrate the original sto-
chastic system of the SEIR model �Eqs. �1a�–�1c�� along
with the transformed stochastic system �Eqs. �20a�–�20c��
using a stochastic fourth-order Runge–Kutta scheme with a
constant time step size. The original system is solved for S,
E, and I, while the transformed system is solved for U, V,
and W. In the latter case, once the values of U, V, and W are

known, we compute the values of S̄, Ē, and Ī using the trans-

formation given by Eqs. �7a�–�7c�. We shift S̄, Ē, and Ī,
respectively, by S0, E0, and I0 to find the values of S, E,
and I.

Figure 2 compares the time series of the fraction of the
population that is infected with a disease I, computed using
the original stochastic system of equations of the SEIR
model with the time series of I computed using the trans-
formed stochastic system of equations of the SEIR model.

Although the two time series shown in Fig. 2 generally
agree very well, there is some discrepancy. This discrepancy
is due to the fact that the noise processes �4�4, �5�5, and

�6�6 of the transformed system are new, independent noise
processes with different variance than the �1�1, �2�2, and
�3�3 noise processes found in the original system. If we
carefully take the noise realization from the original system,
transform this noise using Eqs. �21a�–�21c�, and use this re-
alization to solve the transformed system, then the two solu-
tions would be identical.

B. Reduction in the stochastic SEIR model

It is tempting to consider the reduced stochastic model
found by substitution of Eq. �17� into Eqs. �20b� and �20c�,
so that one has the following stochastic evolution equations
�that hopefully describe the dynamics on the stochastic cen-
ter manifold�:

dV

d	
= −

�2�0
2�0W

��0 + �0�3 −
�4�0W

��0 + �0�2 −
�0�2V

�0 + �0
−

��0 + �2�W�0

�0 + �0

−
��0

2�

��0 + �0�2�W +
�2��0 + �0�

��0 + �2���0 + �2��

�V −

�0
2W

��0 + �0�2� + �5�5, �22a�

dW

d	
=

�2�0
2W

��0 + �0�2 +
�4W

�0 + �0
− �2V +

���0

�0 + �0


�W +
�2��0 + �0�

��0 + �2���0 + �2���V −
�0

2W

��0 + �0�2� + �6�6.

�22b�

One should note that Eqs. �22a� and �22b� also can be
found by naïvely adding the stochastic terms to the reduced
system of evolution equations for the deterministic problem
�Eqs. �18a� and �18b��. This type of stochastic center mani-
fold reduction has been done for the case of discrete noise.27

Additionally, in many other fields �e.g., oceanography, solid
mechanics, fluid mechanics�, researchers have performed
stochastic model reduction using a Karhunen–Loève expan-
sion �principal component analysis, proper orthogonal
decomposition�.33,34 However, this linear projection does not
properly capture the nonlinear effects. Furthermore, one
must subjectively choose the number of modes needed for
the expansion. Therefore, even though the solution to the
reduced model found using this technique may have the cor-
rect statistics, individual solution realizations will not agree
with the original, complete solution.

We will show that Eqs. �22a� and �22b� do not contain
the correct projection of the noise onto the center manifold.
Therefore, when solving the reduced system, one does not
obtain the correct solution. Such errors in stochastic epi-
demic modeling impact the prediction of disease outbreak
when modeling the spread of a disease in a population.

Using the same numerical scheme previously described,
we numerically integrate the complete stochastic system of
transformed equations of the SEIR model �Eqs. �20a�–�20c��
along with the reduced system of equations that is based on
the deterministic center manifold with a replacement of the
noise terms �Eqs. �22a� and �22b��. The complete system is
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FIG. 2. �Color online� Time series of the fraction of the population that is
infected with a disease I, computed using the original stochastic system of
equations of the SEIR model �Eqs. �1a�–�1c�� �red solid line�, and computed
using the transformed stochastic system of equations of the SEIR model
�Eqs. �20a�–�20c�� �blue dashed line�. The standard deviation of the noise
intensity used in the simulation is �i=0.0005, i=1, . . . ,6.
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solved for U, V, and W, while the reduced system is solved
for V and W. In the latter case, U is computed using the
center manifold equation given by Eq. �17�. Once the values

of U, V, and W are known, we compute the values of S̄, Ē,

and Ī using the transformation given by Eqs. �7a�–�7c�. We

shift S̄, Ē, and Ī, respectively, by S0, E0, and I0 to find the
values of S, E, and I.

Figures 3�a� and 3�b� compare the time series of the
fraction of the population that is infected with a disease I,
computed using the complete stochastic system of trans-
formed equations of the SEIR model �Eqs. �20a�–�20c�� with
the time series of I computed using the reduced system of
equations of the SEIR model that is based on the determin-
istic center manifold with a replacement of the noise terms
�Eqs. �22a� and �22b��. Figure 3�a� shows the initial tran-
sients, while Fig. 3�b� shows the time series after the tran-
sients have decayed. One can see that the solution computed
using the reduced system quickly becomes out of phase with
the solution of the complete system. Use of this reduced
system would lead to an incorrect prediction of the initial
disease outbreak. Additionally, the predicted amplitude of the
initial outbreak would be incorrect. The poor agreement,
both in phase and amplitude, between the two solutions con-

tinues for long periods of time, as seen in Fig. 3�b�. We also
have computed the cross correlation of the two time series
shown in Figs. 3�a� and 3�b� to be approximately 0.34. Since
the cross correlation measures the similarity between the two
time series, this low value quantitatively suggests a poor
agreement between the two solutions.

Using the same systems of transformed equations, we
compute 140 years worth of time series for 500 realizations.
Ignoring the first 40 years of transient solution, the data are
used to create a histogram representing the probability den-
sity pSI of the S and I values. Figure 4�a� shows the histo-
gram associated with the complete stochastic system of
transformed equations, while Fig. 4�b� shows the histogram
associated with the reduced system of equations with a re-
placement of the noise terms. The color-bar values in Figs.
4�a� and 4�b� have been normalized by 10−3.

One can see by comparing Fig. 4�a� with Fig. 4�b� that
the two probability distributions qualitatively look the same.
It is also possible to compare the two distributions using a
quantitative measure. The Kullback–Leibler divergence or
relative entropy measures the difference between the two
probability distributions as

dKL = �
i,j

Pi,j
log� Pi,j

Qi,j
�
 , �23�

where Pi,j refers to the �i , j�th component of the probability
density found using the complete stochastic system of trans-
formed equations �Fig. 4�a�� and Qi,j refers to the �i , j�th
component of the probability density found using the re-
duced system of equations �Fig. 4�b��. In our numerical com-
putation of the relative entropy, we have added 10−10 to each
Pij and Qij. This eliminates the possibility of having a Qij =0
in the denominator of Eq. �23� and does not have much of an
effect on the relative entropy.

If the two histograms were identical, then the relative
entropy given by Eq. �23� would be dKL=0. The two histo-
grams shown in Figs. 4�a� and 4�b� have a relative entropy of
dKL=0.0391, which means that the two histograms, while not
identical, are quantitatively very similar. However, one can-
not rely entirely on the histograms alone to say that the so-
lutions of the complete system and the reduced system agree.
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FIG. 3. �Color online� Time series of the fraction of the population that is
infected with a disease I, computed using the complete stochastic system of
transformed equations of the SEIR model �Eqs. �20a�–�20c�� �red solid line�,
and computed using the reduced system of equations of the SEIR model that
is based on the deterministic center manifold with a replacement of the noise
terms �Eqs. �22a� and �22b�� �blue dashed line�. The standard deviation of
the noise intensity used in the simulation is �i=0.0005, i=4,5 ,6. The time
series is shown for �a� t=0 to t=40 and for �b� t=40 to t=100.

(b)(a)

FIG. 4. �Color online� Histogram of probability density pSI of the S and I
values found using �a� the complete stochastic system of transformed equa-
tions for the SEIR model �Eqs. �20a�–�20c�� and �b� the reduced system of
equations of the SEIR model that is based on the deterministic center mani-
fold with a replacement of the noise terms �Eqs. �22a� and �22b��. The
histograms are created using 100 years worth of time series �starting with
year 40� for 500 realizations, and the color-bar values have been normalized
by 10−3.
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As we have seen in Figs. 3�a� and 3�b�, the two solutions
have differing amplitudes and are out of phase with one an-
other. It is important to note that these features are not picked
up by the histograms of Fig. 4.

V. CORRECT PROJECTION OF THE NOISE
ONTO THE STOCHASTIC CENTER MANIFOLD

To project the noise correctly onto the center manifold,
we will derive a normal form coordinate transform for the
complete stochastic system of transformed equations of the
SEIR model given by Eqs. �20a�–�20c�. The particular
method we use to construct the normal form coordinate
transform not only reduces the dimension of the dynamics,
but also separates all of the fast processes from all of the
slow processes.25 This technique has been modified and ap-
plied to the large fluctuations of multiscale problems.17

Many publications19–22 discuss the simplification of a
stochastic dynamical system using a stochastic normal form
transformation. In some of this work,19,22 anticipative noise
processes appeared in the normal form transformations, but
these integrals of the noise process into the future were not
dealt with rigorously.

Later, the rigorous theoretical analysis needed to support
normal form coordinate transforms was developed in Refs.
23 and 24. The technical problem of the anticipative noise
integrals also was dealt with rigorously in this work. Even
later, another stochastic normal form transformation was
developed.25 This new method allows for the “�removal of�
anticipation… from the slow modes with the result that no
anticipation is required after the fast transients decay” �Ref.
25, p. 13�. The removal of anticipation leads to a simplifica-
tion of the normal form. Nonetheless, this simpler normal
form retains its accuracy with the original stochastic
system.25

We shall use the method of Ref. 25 to simplify our sto-
chastic dynamical system to one that emulates the long-term

dynamics of the original system. The method involves five
principles, which we recapitulate here for completeness:

�1� Avoid unbounded secular terms in both the transforma-
tion and the evolution equations to ensure a uniform
asymptotic approximation.

�2� Decouple all of the slow processes from the fast pro-
cesses to ensure a valid long-term model.

�3� Insist that the stochastic slow manifold is precisely the
transformed fast processes coordinate being equal to
zero.

�4� To simplify matters, eliminate as many as possible of the
terms in the evolution equations.

�5� Try to remove all fast processes from the slow processes
by avoiding as much as possible the fast time memory
integrals in the evolution equations.

In practice, the original stochastic system of equations
�which satisfies the necessary spectral requirements� in
�U ,V ,W�T coordinates is transformed to a new �Y ,X1 ,X2�T

coordinate system using a near-identity stochastic coordinate
transform given as

U = Y + ��Y,X1,X2,	� , �24a�

V = X1 + 
�Y,X1,X2,	� , �24b�

W = X2 + ��Y,X1,X2,	� , �24c�

where the specific form of ��Y ,X1 ,X2 ,	�, 
�Y ,X1 ,X2 ,	�, and
��Y ,X1 ,X2 ,	� is chosen to simplify the original system ac-
cording to the five principles listed previously, and is found
using an iterative procedure. To outline the procedure, we
provide details for a simple example in Appendix A.

Several iterations lead to coordinate transforms for U, V,
and W along with evolution equations describing the
Y-dynamics, X1-dynamics, and X2-dynamics in the new co-
ordinate system. The Y-dynamics have exponential decay to
the Y =0 slow manifold. Substitution of Y =0 leads to the
coordinate transforms

U = �4G��4� +
�0

2��6G��6� − X2�
��0 + �0�2 + ���0���5X2G��5� − X1X2 + �6X1G��6��

��0 + �0�2 −
�4�0��0G2��4����0 + �0�X1 + �0X2�

��0 + �0���0 + �2���0 + �2� �
+ �2��0�X1�0 − 2X2 + 2�6G��6��

�0��0 + �0�
−

�4G2��4�
��0 + �2���0 + �2�

�2�0
3 + �0

3

�0 + �0
+

�0
2�0

2��0 + �0�
��0 + �2���0 + �2�

� −
�5�0G��5�
��0 + �0�2 �

+ �3���− X1 + �5G��5��
��0 + �0�2 −

�4�G2��4�
��0 + �2���0 + �2�� �0�0

�0 + �0
+ �0X2 + X1��0 + �0�� +

���6X1G��6� + �5X2G��5� − X1X2�0�
�0��0 + �0� �

+ O��4� , �25a�

V = X1 + ���4�0�X1G��4�
�0 + �0

+
�4�0�X2G��4�

��0 + �0�2 � + �2��4G��4���0
2 + �0�0 + �0

2�
�0��0 + �0�2 �

+ �3��4�0�G��4�
�0��0 + �0�2 +

�4�X2G��4�
�0��0 + �0�

+
�4�X1G��4�

�0
2 � + O��4� , �25b�
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W = X2 + ��−
�4�X1G��4�

�0
−

�4�X2G��4�
��0 + �0� � + �2��4G��4���0

2 + �0�0 + �0
2�

�0�0��0 + �0�
�

+ �3�−
�4�G��4�

�0��0 + �0�
−

�4��0 + �0��X1G��4�

�0�0
2 −

�4�X2G��4�
�0�0

� + O��4� , �25c�

where

G��� = e−�	 � �

= �
−�

	

exp�− � · �	 − s����s�ds ,

�26�

� =
�0�0��0 + �0�

��0 + �2���0 + �2�

and

G2��� = e−�	 � e−�	 � � . �27�

All of the stochastic terms in Eqs. �25a�–�25c� consist of
integrals of the noise process into the past �convolutions�, as
given by Eqs. �26� and �27�. These memory integrals are
fast-time processes. Since we are interested in the long term
slow processes and since the expectation of G equals
e−�	�E���, where E���=0, we neglect the memory integrals
and the higher-order multiplicative terms found in Eqs.
�25a�–�25c� so that

U = −
�0

2X2

��0 + �0�2 −
��X1

��0 + �0�� �2

��0 + �0�
+

�0X2

��0 + �0�
+ �2X2�

+
�2�0

��0 + �0�
�X1 −

2X2

�0
� , �28a�

V = X1, �28b�

W = X2. �28c�

Note that Eq. �28a� is the deterministic center manifold equa-
tion, and at first order, matches the center manifold equation
that was found previously �Eq. �17��.

Substitution of Y =0 and neglecting all multiplicative
noise terms and memory integrals using the argument from
above �so that we consider only first-order noise terms� leads
to the following reduced system of evolution equations on
the center manifold:

dX1

d	
= F�X1�	�,X2�	�� , �29a�

dX2

d	
= G�X1�	�,X2�	�� . �29b�

The specific form of F and G in Eqs. �29a� and �29b� is
complicated and is therefore presented in Appendix B.

We numerically integrate the complete stochastic system
of transformed equations of the SEIR model �Eqs.
�20a�–�20c�� along with the reduced system of equations that

is found using the stochastic normal form coordinate trans
form �Eqs. �29a�, �29b�, �B1a�, and �B1b��. The complete
system is solved for U, V, and W, while the reduced system
is solved for X1=V and X2=W. In the latter case, U is com-
puted using the center manifold equation given by Eq. �28a�.
As before, once the values of U, V, and W are known, we

compute the values of S̄, Ē, and Ī using the transformation

given by Eqs. �7a�–�7c�. We shift S̄, Ē, and Ī, respectively, by
S0, E0, and I0 to find the values of S, E, and I.

Figures 5�a� and 5�b� compare the time series of the
fraction of the population that is infected with a disease I,
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FIG. 5. �Color online� Time series of the fraction of the population that is
infected with a disease I, computed using the complete stochastic system of
transformed equations of the SEIR model �Eqs. �20a�–�20c�� �red solid line�,
and computed using the reduced system of equations of the SEIR model that
is found using the stochastic normal form coordinate transform �Eqs. �29a�,
�29b�, �B1a�, and �B1b�� �blue dashed line�. The standard deviation of the
noise intensity used in the simulation is �i=0.0005, i=4,5 ,6. The time
series is shown for �a� t=0 to t=40 and for �b� t=40 to t=100.

043110-9 Noise projection for epidemic models Chaos 19, 043110 �2009�



computed using the complete stochastic system of trans-
formed equations of the SEIR model �Eqs. �20a�–�20c�� with
the time series of I computed using the reduced system of
equations of the SEIR model that is found using the stochas-
tic normal form coordinate transform �Eqs. �29a�, �29b�,
�B1a�, and �B1b� �. Figure 5�a� shows the initial transients,
while Fig. 5�b� shows the time series after the transients have
decayed. One can see that there is an excellent agreement
between the two solutions. The initial outbreak is success-
fully captured by the reduced system. Furthermore, Fig. 5�b�
shows that the reduced system accurately predicts recurrent
outbreaks for a time scale that is orders of magnitude longer
than the relaxation time. This is not surprising since the so-
lution decays exponentially throughout the transient and then
remains close to the lower-dimensional center manifold.
Since we are not looking at periodic orbits, there are no
secular terms in the asymptotic expansion, and the result is
valid for all time. Additionally, any noise drift on the center
manifold results in bounded solutions due to sufficient dissi-
pation transverse to the manifold. The cross correlation of
the two time series shown in Fig. 5 is approximately 0.98,
which quantitatively suggests there is an excellent agreement
between the two solutions.

Using the same systems of transformed equations, we
compute 140 years worth of time series for 500 realizations.
As before, we ignore the first 40 years worth of transient
solution, and the data are used to create a histogram repre-
senting the probability density pSI of the S and I values.
Figure 6�a� shows the histogram associated with the com-
plete stochastic system of transformed equations, while Fig.
6�b� shows the histogram associated with the reduced system
of equations found using the normal form coordinate trans-
form. The color-bar values in Figs. 6�a� and 6�b� have been
normalized by 10−3.

As we saw with Figs. 4�a� and 4�b�, the probability dis-
tribution shown in Fig. 6�a� looks qualitatively the same as
the probability distribution shown in Fig. 6�b�. Using the
Kullback–Leibler divergence given by Eq. �23�, we have
found that the two histograms shown in Figs. 6�a� and 6�b�
have a relative entropy of dKL=0.0953. Since this value is

close to zero, the two histograms are quantitatively very
similar.

In addition to computing the cross correlation between
the solution of the original system and the solutions of the
two reduced systems for �i=0.0005, we have computed the
cross correlation for the case of zero noise as well
as for noise intensities ranging from �=5.0
10−10 to
�=5.0
10−5. These cross correlations were computed using
time series from t=800 to t=1000. For the deterministic case
�zero noise�, the cross correlation between the time series
which were computed using the original system and the re-
duced system based on the deterministic center manifold is
1.0, since the agreement is perfect. The cross correlation be-
tween the original system and the reduced system found us-
ing the stochastic normal form is also 1.0. Figure 7 shows the
cross correlation between the original system and the two
reduced systems for various values of �.

One can see in Fig. 7 that the solutions found using the
reduced system based on the deterministic center manifold
compare poorly with the original system at very low noise
values. Furthermore, as the noise increases, the agreement
between the two solutions gets worse. On the other hand,
Fig. 7 shows that the solutions computed using the reduced
system found using the normal form coordinate transform
compare very well with the solutions to the original system
across a wide range of small noise intensities.

VI. DISCUSSION

We have demonstrated that the normal form coordinate
transform method reduces the Langevin system so that both
the noise and dynamics are accurately projected onto the
lower-dimensional manifold. It is natural to consider �a� the
replacement of the stochastic term by a deterministic period
drive of small amplitude and �b� the extension to finite popu-
lations. These cases are discussed, respectively, in Secs. VI A
and VI B.

(b)(a)

FIG. 6. �Color online� Histogram of probability density pSI of the S and I
values found using �a� the complete stochastic system of transformed equa-
tions for the SEIR model with mortality �Eqs. �20a�–�20c�� and �b� the
reduced system of equations of the SEIR model with mortality that is found
using the stochastic normal form coordinate transform �Eqs. �29a�, �29b�,
�B1a�, and �B1b��. The histograms are created using 100 years worth of time
series �starting with year 40� for 500 realizations, and the color-bar values
have been normalized by 10−3.
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FIG. 7. Cross correlation between time series found using the original sto-
chastic system of transformed equations and the reduced system of equa-
tions based on the deterministic center manifold �“circle” markers� and cross
correlation between time series found using the original stochastic system of
transformed equations and the reduced system of equations based on the
stochastic normal form coordinate transform �“square” markers�. The cross
correlation is computed using time series from t=800 to t=1000.
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A. The case of deterministic forcing

A single time series realization of the noise might be
thought of as a deterministic function of small amplitude
driving the system. One could rederive the normal form for
such a deterministic function. However, since our derived
normal form holds specifically for the case of white noise,
we show that a simple replacement of the stochastic realiza-
tion with a deterministic realization does not work. As an
example, one could consider the following sinusoidal func-
tions:

�1�1 = cos�10��t�/8000, �30a�

�2�2 = sin�4��t�/8000, �30b�

�3�3 = cos�10��t�/8000, �30c�

where �4�4, �5�5, and �6�6 are given by Eqs. �21a�–�21c�.
Using Eqs. �30a�–�30c� or some other similar deterministic
drive, the solution computed using the reduced system based
on the deterministic center manifold analysis will agree per-
fectly with the solution computed using the complete system
of equations. On the other hand, since the reduced system
based on the normal form analysis was derived specifically
for white noise, the transient solution found using this re-
duced system will not agree with the solution found using
the complete system. It is possible to find a normal form
coordinate transform for periodic forcing, but the normal
form will be different than the one derived in this article for
white noise.

Figures 8�a� and 8�b� compare the time series of the
fraction of the population that is infected with a disease I,
computed using the complete system of transformed equa-
tions of the SEIR model �Eqs. �20a�–�20c�� with the time
series of I computed using the reduced system of equations
of the SEIR model that is found using the stochastic normal
form coordinate transform �Eqs. �29a�, �29b�, �B1a�, and
�B1b��, but where the stochastic terms of both systems have
been replaced by the deterministic terms given by Eqs.
�30a�–�30c�. Figure 8�a� shows the initial transients, while
Fig. 8�b� shows a piece of the time series after the transients
have decayed. One can see in Figs. 8�a� and 8�b� that al-
though the two solutions eventually become relatively syn-
chronized with one another, there is a poor agreement, both
in phase and amplitude, throughout the transient.

B. The case of finite populations

The solutions to the original system and both reduced
systems are continuous solutions based on an infinite popu-
lation assumption and are found using Langevin equations
having Gaussian noise. It is interesting to examine the effects
of general noise by using a Markov simulation to compare
solutions of the original and reduced systems.

The complete system in the original variables �see p. 2�
will evolve in time t in the following way:

transition rate

�s − 1,e + 1,i� �si/N
�s,e − 1,i + 1� �e

�s,e,i − 1� �i

�s + 1,e,i� �N

�s − 1,e,i� �s

�s,e − 1,i� �e

�s,e,i − 1� �i .

�31�

Using a total population size of N=10
106, we have per-
formed a Markov simulation of the system. After completing
the Markov simulation, we divided s, e, and i by N to find S,
E, and I. Figure 9�a� shows a time series, after the transients
have decayed, of the fraction of the population that is in-
fected with a disease I. The results reflect both the mean and
the frequency of the deterministic system. Performing the
simulation for 500 realizations allows us to create a histo-
gram representing the probability density pSI of the S and I
values. This histogram is shown in Fig. 9�b�, and one can see
that the probability density reflects the amplitude, which var-
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FIG. 8. �Color online� Time series of the fraction of the population that is
infected with a disease I, computed using the complete system of trans-
formed equations of the SEIR model �Eqs. �20a�–�20c�� �red solid line�, and
computed using the reduced system of equations of the SEIR model that is
found using the normal form coordinate transform �Eqs. �29a�, �29b�, �B1a�,
and �B1b�� �blue dashed line�. The stochastic terms in both systems have
been replaced by the deterministic terms given by Eqs. �30a� and �30b�. The
time series is shown from �a� t=0 to t=25 and from �b� t=65 to t=70.
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ies with the population size of S and I. The color-bar values
in Fig. 9�b� have been normalized by 10−4

The complete system in the transformed variables has
the stable endemic equilibrium at the origin. To bound the
dynamics to the first octant, we use the fact that s�0, e
�0, and i�0 to derive the appropriate inequalities for the
transformed discrete variables u, v, and w. These inequalities
can be found in Appendix C as Eq. �C1�. These inequalities
enable us to define new discrete variables Y1, Y2, and Y3

given by Eqs. �C2a�–�C2c� in Appendix C.
In the Yi variables, we define evolution relationships

similar to those found in Eq. �31�. The complete transformed
system will evolve in time 	 according to the transition and
rates given by Eq. �C3� in Appendix C.

After performing a Markov simulation of Eq. �C3� with
a population size of N=10
106, we can compare the dy-
namics of the transformed system with the dynamics of the
original system by transforming the Yi variables in the time
series back to the original s, e, and i variables. Dividing by N
yields S, E, and I. Figure 10�a� shows a time series, after the
transients have decayed, of the fraction of the population that
is infected with a disease I. The mean and the frequency
agree with those found from the Markov simulation of the
original system. We have performed the simulation for 500
realizations, and a histogram representing the probability

density pSI is shown in Fig. 10�b�. The color-bar values in
Fig. 10�b� have been normalized by 10−4. One can see in Fig.
10�a� that the relative fluctuations of the I component have
nearly doubled. While the fluctuation size was 0.152 for the
original system, it is 0.310 for the transformed system. Ad-
ditionally, the two histograms shown in Figs. 9�b� and 10�b�
have a relative entropy of dKL=0.9519, which means they are
not in agreement. Because the simulation of the stochastic
dynamics in the complete system of transformed variables
does not qualitatively �or quantitatively� resemble the origi-
nal stochastic system, we cannot expect that the reduced sys-
tem will agree with either the original or the transformed
systems. Therefore, much care should be exercised when ex-
tending the model reduction results �which show outstanding
agreement� derived for a specific type of noise in the limit of
infinite population to finite populations with a more general
type of noise.

VII. CONCLUSIONS

We have considered the dynamics of a SEIR epidemio-
logical model with stochastic forcing in the form of additive
Gaussian noise. We have presented two methods of model
reduction, whereby the goal is to project both the noise and
the dynamics onto the stochastic center manifold. The first
method uses the deterministic center manifold found by ne-
glecting the stochastic terms in the governing equations,
while the second method uses a stochastic normal form co-
ordinate transform.

Since the original system of governing equations does
not have the necessary spectral structure to employ either
deterministic or stochastic center manifold theory, the system
of equations has been transformed using an appropriate lin-
ear transformation coupled with appropriate parameter scal-
ing. At this stage, the first method of model reduction can be
performed by computing the deterministic center manifold
equation. Substitution of this equation into the complete sto-
chastic system of transformed equations leads to a reduced
system of stochastic evolution equations.

The solutions of the complete stochastic system of trans-
formed equations as well as the reduced system of equations
were computed numerically. We have shown that the indi-
vidual time series does not agree because the noise has not
been correctly projected onto the stochastic center manifold.
However, by comparing histograms of the probability den-
sity pSI of the S and I values, we saw that there was a very
good agreement. This is caused by the fact that although the
two solutions are out of phase with one another, their range
of amplitude values is similar. The phase difference is not
represented in the two histograms. This is a real drawback
when trying to predict the timing of outbreaks and leads to
potential problems when considering epidemic control, such
as the enhancement of disease extinction through random
vaccine control.35

To accurately project the noise onto the manifold, we
derived a stochastic normal form coordinate transform for
the complete stochastic system of transformed equations.
The numerical solution to this reduced system was compared
with the solution to the original system, and we showed that
there was an excellent agreement both qualitatively and
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FIG. 9. �Color online� �a� Time series of the fraction of the population that
is infected with a disease I, computed using a Markov simulation of the
complete original equations of the SEIR model �Eq. �31�� and �b� a histo-
gram of probability density pSI of the S and I values found using a Markov
simulation of Eq. �31�. The histogram is created using 100 years worth of
data �starting with year 40� for 500 realizations, and the color-bar values
have been normalized by 10−4.
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FIG. 10. �Color online� �a� Time series of the fraction of the population that
is infected with a disease I, computed using a Markov simulation of the
complete transformed equations of the SEIR model �Eq. �C3�� and �b� a
histogram of probability density pSI of the S and I values found using a
Markov simulation of Eq. �C3�. The histogram is created using 100 years
worth of data �starting with year 40� for 500 realizations, and the color-bar
values have been normalized by 10−4.
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quantitatively. As with the first method, the histograms of the
probability density pSI of the S and I values agree very well.

It should be noted that the use of these two reduction
methods is not constrained to problems in epidemiology, but
rather may be used for many types of physical problems. For
some generic systems, such as the singularly perturbed,
damped Duffing oscillator, either reduction method can be
used since the terms in the normal form coordinate transform
which lead to the average stochastic center manifold being
different from the deterministic center manifold occur at very
high order.17 In other words, the average stochastic center
manifold and deterministic center manifold are virtually
identical. For the SEIR model considered in this article, there
are terms at low order in the normal form transform, which
cause a significant difference between the average stochastic
center manifold and the deterministic manifold. Therefore, as
we have demonstrated, when working with the SEIR model,
one must use the normal form coordinate transform method
to correctly project the noise onto the center manifold.

In summary, we have presented a new method of sto-
chastic model reduction that allows for impressive improve-
ment in time series prediction. The reduced model captures
both the amplitude and phase accurately for a temporal scale
that is many orders of magnitude longer than the typical
relaxation time. Since sufficient statistics of disease data are
limited due to short time series collection, the results pre-
sented here provide a potential method to properly model
real, stochastic disease data in the time domain. Such long-
term accuracy of the reduced model will allow for the appli-
cation of effective control of a disease where phase differ-
ences between outbreak times and vaccine controls are
important. Additionally, since our method is general, it may
be applied to very high-dimensional epidemic models, such
as those involving adaptive networks. From a dynamical sys-
tems viewpoint, the reduction method has the potential to
accurately capture new, emergent dynamics as we increase
the size of the random fluctuations. This could be a means to
identify new noise-induced phenomena in generic stochastic
systems.
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APPENDIX A: DETAILS OF THE ITERATIVE
PROCEDURE FOR A SIMPLE EXAMPLE

We consider the system given by

dx

d	
= ��y + ��� , �A1a�

dy

d	
= x − x3 − y , �A1b�

d�

d	
= 0. �A1c�

The iterative procedure begins by letting

x � X , �A2a�

X� � 0, �A2b�

and by finding a change to the y coordinate �fast process�
with the form

y = Y + 
�	,X,Y� + ¯ , �A3a�

Y� = − Y + G�	,X,Y� + ¯ , �A3b�

where 
 and G are small corrections to the coordinate trans-
form and the corresponding evolution equation. Substitution
of Eqs. �A2a� and �A3b� into Eq. �A1b� gives the equation

Y� +
�


�	
+

�


�X

�X

�	
+

�


�Y

�Y

�	
= − Y − 
 + X − X3. �A4�

Replacing Y�=�Y /�	 with −Y +G �Eq. �A3b��, noting that
�X /�	=0 �Eq. �A2b��, and ignoring the term �
 /�Y ·G since
it is a product of small corrections leads to

G +
�


�	
− Y

�


�Y
+ 
 = X − X3. �A5�

Equation �A5� must now be solved for G and 
. In order
to keep the evolution equation �Eq. �A3b�� as simple as pos-
sible �principle �4� of Sec. V�, we let G=0, which means that
the coordinate transform �Eq. �A3a�� is modified by 
=X
−X3. Therefore, the new approximation of the coordinate
transform and its dynamics are given by

y = Y + X − X3 + O��2� , �A6a�

Y� = − Y + O��2� , �A6b�

where �= ��X ,Y ,� ,��� so that � provides a count of the num-
ber of X, Y, �, and � factors in any one term.

For the second iteration, we seek a correction to the x
coordinate �slow process� with the form

x = X + ��	,X,Y� + ¯ , �A7a�

X� = F�	,X,Y� + ¯ , �A7b�

where � and F are small corrections. Substitution of Eqs.
�A6a� and �A7b� into Eq. �A1a� leads to
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X� +
��

�	
+

��

�X

�X

�	
+

��

�Y

�Y

�	
= ��Y + X − X3� + ��� . �A8�

Replacing X�=�X /�	 with F �Eq. �A7b��, replacing �Y /�	
with −Y �Eq. �A6b��, and ignoring the term �� /�X ·F since it
is a product of small corrections gives the equation

F +
��

�	
− Y

��

�Y
= ��Y + X − X3� + ��� . �A9�

Equation �A9� must now be solved for F and �. As in the
first step, we employ principle �4� and keep the evolution
equation �Eq. �A7b�� as simple as possible. However, since
the terms ��X−X3� located on the right-hand side of Eq.
�A9� do not contain 	 or Y, these terms must be included in
F. Therefore, one piece of F will be F=��X−X3�.

The remaining deterministic term on the right-hand side
of Eq. �A9� contains Y. This term can therefore be integrated
into �. The equation to be solved is

− Y
��

�Y
= �Y , �A10�

whose solution is given as �=−�Y.

To abide by principle �4�, we would like to integrate the
stochastic piece on the right-hand side of Eq. �A9� into � by
solving the equation

��/�	 = ��� . �A11�

However, the solution of Eq. �A11� is given by

� = ��� �d	 , �A12�

which has secular growth like a Wiener process. Since this
would violate principle �1�, we must let F=���.

Putting the three pieces together yields �=−�Y and F
=��X−X3�+���. Therefore, the new approximation of the
coordinate transform and its dynamics are given by

x = X − �Y + O��3� , �A13a�

X� = ��X − X3� + ��� + O��3� . �A13b�

The construction of the normal form continues by seek-
ing corrections � and F to the x coordinate transform and the
X evolution using the updated residual of the x equation �Eq.
�A1a��, and by seeking corrections 
 and G to the y coordi-
nate transform and the Y evolution equation using the up-
dated residual of the y equation �Eq. �A1b��.

APPENDIX B: REDUCED STOCHASTIC SEIR MODEL: CORRECT PROJECTION OF THE NOISE

The specific form of F and G in Eqs. �29a� and �29b� is given as

F = − ��0
2�0

3X2 +
���0

2

��0 + �0�
�0

2�−
�0

2

�0 + �0
X2

2 + �0X1X2�
+ �2��0�0

3X1 +
�0�0

2�2�0
3 + 5�0

2�0 + 5�0�0
2 + �0

3�
��0 + �0�2 X2 −

�0
2�2�0

2

��0 + �0�
X1

2X2 −
�0

2�2�0
3

��0 + �0�2X1X2
2�

+ �3��0
2��0X1 −

�0
2��0

3

��0 + �0�2X2 +
�0

2��0
2

��0 + �0�
X1

2 −
3�0��0

3

��0 + �0�
X2

2 +
�0��0��0

3 − �0
2�0 − 3�0�0

2 − 3�0
3�

��0 + �0�2 X1X2���
��0��0 + �0���0 + �2���0 + �2�� + �5�5 −

�2��0
2 + �0�0 + �0

2�
��0 + �0�3 ��4�0�4

�0
+

�6�0�6

�0 + �0
� −

�3�0�

��0 + �0�3��4�0�4

�0
+

�6�0�6

��0 + �0�� ,

�B1a�

G = ��� �0
3��0

2

��0 + �0�
X1X2 −

�0
2��0

4

��0 + �0�2X2
2� + �2�− �0

2�0
2X1 +

�0
2�0

4

��0 + �0�2X2 −
�0

2�2�0
2

��0 + �0�
X1

2X2 −
�0

2�2�0
3

��0 + �0�2X1X2
2�

+ �3��0
2��0X1 −

�0
2��0

3

��0 + �0�2X2 +
�0

2��0
2��0 + �2���0 + �2�

��0 + �0�
X1

2 −
3�0��0

3

��0 + �0�
X2

2 − 3�0��0
2��0 + �2���0 + �2�X1X2

+
�0

2��0��0
2 + 2�0�0 + 3�0

2�
��0 + �0�2 X1X2���

��0�0��0 + �2���0 + �2�� + �6�6 +
�2�4��0

2 + �0�0 + �0
2�

�0�0��0 + �0�
�4 +

�2�6��0
3��0 + �2���0 + �2� + �0�0��0 + �0��

�0��0 + �0�3 �6

+
�3�

��0 + �0���4�4

�0
+

�6�0�6

��0 + �0�2� . �B1b�
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APPENDIX C: MARKOV SIMULATION
FOR TRANSFORMED SEIR MODEL

The complete system in the transformed variables has
the stable endemic equilibrium at the origin. To bound the
dynamics to the first octant, we transform the new variables
by using the original properties of s�0, e�0, and i�0, so
that

u �
�2N�0

�0��0 + �0�
, −

N�0���3 + �0
2 + �0�0�

�0����0 + �0�
� v ,

�C1�

−
N�2��0 + �0�

�0�0
� w .

Therefore, we define the following new variables:

Y1 = − u +
N�2�0

�0��0 + �0�
, �C2a�

Y2 = v +
N�0���3 + �0

2 + �0�0�
�0����0 + �0�

, �C2b�

Y3 = w +
N�2��0 + �0�

�0�0
. �C2c�

In these variables, we define evolution relationships similar
to Eq. �31�. The complete transformed system will evolve in
	 the following way:

transition rate

�Y1 + 1,Y2,Y3�
��

N
� �0

�0 + �0
Y2Y3 + Y1

2�
�Y1 − 1,Y2,Y3� ��0 + �2�Y1 +

��

N
� �0

�0 + �0
Y1Y3 + Y1Y2�

�Y1,Y2 + 1,Y3� �2N +
��

N
� �0

��0 + �0�
Y1Y3 +

�0

�0
Y1Y2�

�Y1,Y2 − 1,Y3� �0Y1 + �2Y2 +
��

N
� �0

��0 + �0�
Y2Y3 +

�0

�0
Y1

2�
�Y1,Y2,Y3 + 1� ��0 + �0�Y1 +

��

N
�Y2Y3 +

��0 + �0�
�0

Y1
2�

�Y1,Y2,Y3 − 1� ��0 + �2�Y3 +
��

N
�Y1Y3 +

��0 + �0�
�0

Y1Y2� .

�C3�
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