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Abstract The goal of this paper is to motivate the need and lay the foundation for
the analysis of stochastic epidemiological models with seasonal forcing. We consider
stochastic SIS and SIR epidemic models, where the internal noise is due to the random
interactions of individuals in the population. We provide an overview of the general
theoretic framework that allows one to understand noise-induced rare events, such as
spontaneous disease extinction. Although there are many paths to extinction, there
is one path termed the optimal path that is probabilistically most likely to occur. By
extending the theory, we have identified the quasi-stationary solutions and the optimal
path to extinction when seasonality in the contact rate is included in the models.
Knowledge of the optimal extinction path enables one to compute the mean time to
extinction, which in turn allows one to compare the effect of various control schemes,
including vaccination and treatment, on the eradication of an infectious disease.
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28 L. Billings, E. Forgoston

1 Introduction

Consider the research disciplines of epidemiology and mathematical modeling. Epi-
demiology involves the study and analysis of health-related events. One focus is the
analysis of observed patterns of infectious disease in human populations, along with
the implementation of programs such asmass vaccination to control the disease.Math-
ematical modeling aims to describe real-world physical and biological phenomena.
In particular, a main goal of modeling is to predict future quantities and the dynamics
of the system of interest based on current observations. Once the system is well-
understood, control may be implemented to change how the system behaves so that a
desired state is achieved.

These two disciplines seem to be an ideal example for research convergence [1,2],
where multidisciplinary approaches and analysis provide for the emergence of novel
methods to address challenging public health issues. However, many results from
mathematical epidemiology, a branch ofmathematical biology, are criticized by public
health officials and epidemiologists. The criticism often is due to their perception that
the results lack impact and cannot be implemented in the field. One reason for this
disconnect may be a general misinterpretation in the goals of predicting quantitative
behavior versus qualitative behavior.

When modeling large, complicated systems encountered in the real-world, such
as the outbreak and spread of infectious disease, one often resorts to simplifying the
system so that the associated model will be analytically and numerically tractable.
The simplification process involves neglecting contributions which are believed to
have a small effect on the model outcomes. A broad array of mathematical modeling
approaches has been developed specifically for epidemiology [3–5], with some meth-
ods having more impact than others. Several theoretical cornerstones, including the
mass-action principle for transmission rates and the threshold theory, are now widely
accepted [6–9].

Thesemodeling approaches are based on constructing deterministic compartmental
models that typically consist of ordinary or partial differential equations. Analysis of
the model provides the basic reproduction number, which enables one to determine if
a system can support a stable endemic state, a level for which new infections are gen-
erated fast enough to replace the ones removed by recovery and/or death. Describing
a complex system by a basic reproduction number is now viewed as the standard start-
ing point for which mathematics can contribute insight to epidemiology. In addition
to the reproductive number, these simplified, differential equation models allow one
to derive useful qualitative observations.

However, as mentioned above, public health officials often require quantitative
predictions. This desire for robust quantitative results has increased over the past
decade with the advent of “big data” and enormous computational resources. In an
attempt to satisfy this need, a large body of research has been generated by questioning
and removing simplifying assumptions. Unfortunately, as the models capture more
detail from the system at various population levels, they become far too complex to
approach analytically. Instead, one must resort to numerical methods which provide
a single specific solution but do not allow one to make general predictive statements.
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Seasonal forcing in stochastic epidemiology models 29

As an alternative, one can employ stochastic modeling approaches which allow one
tomake quantitative, statistical predictions,while simultaneously providing qualitative
descriptions of system dynamics. Moreover, another major advantage in considering
stochastic models is due to the fact that classical, deterministic compartment models
are often unable to capture specific disease dynamics observed in epidemiological
studies. Deterministic compartment models are based on the mean behavior of indi-
viduals and do not account for demographic stochasticity [10], or the changes in
population growth rates related to random events. As one example, the inclusion of
stochasticity through consideration of random encounters between individuals may
lead to a local disease extinction. Local extinction of disease is something that is often
seen in actual disease data, but is not captured by deterministic compartment models.
The inclusion of environmental stochasticity can similarly lead to observed dynamics
that are not captured in the deterministic models.While the ability to generate stochas-
tic simulations that provide quantitative statistics for the emergence of new dynamics
is increasing with advances in computational power, there remains a need for new
methods to analyze the underlying stochastic models.

Many researchers have investigated how noise affects physical and biological phe-
nomena at a wide variety of levels. In biology, noise can play a role in sub-cellular
processes, tissue dynamics, and large-scale population dynamics [11]. Although noise
may be external or internal to the system, in this article we consider only internal noise.
Internal noise is inherent in the system itself and is caused by the random interactions
of individuals in a population [12,13]. The noise can induce a rare escape event from
a metastable state. In the context of epidemic models, this rare event is extinction.
There are many possible escape or extinction paths from the endemic state to the
extinct state, but there is a path along which extinction is most likely to occur. This
most likely extinction path is termed the optimal extinction path. The optimal extinc-
tion path is very useful since knowledge of the path enables one to determine the mean
time to extinction from the endemic state.

Mathematically, the effect of internal noise due to the random interactions of indi-
viduals within the system is described using a master equation. The master equation
is a large, or even infinite, set of differential equations. In this article, we use a WKB
(Wentzel–Kramers–Brillouin), or eikonal, approximation to the master equation. The
WKBmethod leads to the development of a Hamiltonian system, which can be solved
for the optimal path [14–22]. The dimensions of the Hamiltonian are twice the dimen-
sions of the original system due to the conjugate momenta variables, but the benefit is
that the transformed system described by the Hamiltonian is deterministic, where the
original problem is stochastic. Themethod amounts to finding a zero-energy trajectory
of an effective mechanical system, and at least one of the solutions to the zero-energy
Hamiltonian is the optimal extinction path. There may be other extinction paths, but
the optimal path is the path that maximizes the probability of extinction.

The methodology demonstrates how these stochastic models can capture dynamics
that are not observed in the classical, deterministic systems. In epidemic problems,
the method has mainly been developed for simple autonomous models with few com-
partments. Larger, complicated systems mostly rely on numerical approximations of
solutions in high-dimensional systems, but new analysis techniques can yield quali-
tative results [23]. In this article, we review recent work to understand noise-induced
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30 L. Billings, E. Forgoston

rare events, such as the extinction of a disease. Although extinction in a time-varying
environment was considered in [24], the analysis was performed only for a birth-death
process with a one-dimensional mean-field equation. In this article, we incorporate
seasonal forcing into realistic stochastic epidemic models, and perform the analysis
to understand the effect of seasonality on epidemic extinction.

The layout for the article is as follows. Section 2 presents the master equation
formalism needed to investigate demographic noise in population models and the gen-
eral method to quantify rare events such as extinction. A simple population model is
presented in Sect. 3. It provides an autonomous example for which a complete ana-
lytical derivation of rare events is possible. A time-dependent version of the example
from Sect. 3 is considered in Sect. 4. In Sect. 5, the methods are extended to a higher
dimensional model. In the last section, we summarize these results and present a brief
discussion of possible extensions.

2 General theory

We consider stochastic epidemicmodels with internal noise that represents the random
interactions of individuals in the population, and use a master equation to describe the
effect of stochasticity.Let X be a state variable that represents the number of individuals
in a compartment of a population.

The probability density ρ(X, t) describes the probability of finding X individuals
in that compartment at time t . Each possible population-changing event (birth, death,
infection, etc.) is defined by a transition rate Wr (X), where r is a positive or negative
integer that defines an incremental change from state X to state X+r . Then the master
equation that provides the time evolution of ρ(X, t) for a single population is [12,13]

∂ρ(X, t)

∂t
=

∑

r

[Wr (X − r)ρ(X − r, t) − Wr (X)ρ(X, t)]. (1)

In general, the solution of themaster equation can be approximated using an asymp-
totic approach. Let X be scaled by N , the typical population size in the metastable
state. Using x = X/N , the transition rate Wr (X) = Wr (Nx) can be represented as
the following expansion in N ,

Wr (Nx) = Nwr (x) + ur (x) + O(1/N ), (2)

where x and the scaled transition rates wr and ur are O(1).
We assume that the system possesses a single, stationary solution for the probabil-

ity density, ∂ρ
∂t = 0 that corresponds to the extinct state. When the probability current

at the extinct state is sufficiently small, there will exist a quasi-stationary probabil-
ity distribution with a non-zero number of infected individuals that decays into the
stationary solution over exponentially long times. The rate at which the extinction
of infected individuals occurs may be calculated from the tail of the quasi-stationary
distribution. It has been shown that a WKB approximation to the quasi-stationary dis-
tribution allows one to approximate the mean-time to extinction with high accuracy
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Seasonal forcing in stochastic epidemiology models 31

for a population size N � 1 [25]. Therefore, we assume a probability distribution in
the form of the WKB ansatz

ρ = e−NS(x,t), (3)

where S(x, t) is a quantity known as the action [15,18,20,26].
The WKB ansatz given by Eq. (3) is substituted into the scaled master equation,

which is stated in terms of wr (x − r/N ) and S(x − r/N , t), where r/N is small. A
Taylor series expansion of these functions of x − r/N is performed, and one arrives at
a Hamilton–Jacobi equation H(x, p; t) = −∂S(x, t)/∂t , where p = ∂S(x, t)/∂x is
called the conjugate momentum. At leading order, the Hamilton–Jacobi equation has
the form H(x, p; t) = 0, known as the effective Hamiltonian (H(x, p)), given as

H(x, p) =
∑

r

wr (x)(e
pr − 1). (4)

The solutions to H(x, p) = 0 are the zero-energy curves of the system. At least
one solution is the optimal extinction path where the action S is minimized which
corresponds to the path that maximizes the probability of extinction.

Hamilton’s equations,

ẋ = ∂H(x, p)/∂p, ṗ = −∂H(x, p)/∂x, (5)

describe the system’s dynamics and are easily found from the Hamiltonian given by
Eq. (4). The x dynamics along the p = 0 deterministic line are described by

ẋ = ∂H(x, p)

∂p
|p=0 (6)

which is the rescaledmean-field rate equation associatedwith the original deterministic
problem.

We are interested in how intrinsic noise can induce a rare extinction event of long-
lived stochastic populations. Extinction occurswhen the population undergoes a switch
from the endemic steady state (xe) to the extinct steady state (x0) as defined by the
system of Hamilton’s equations. The optimal path to extinction popt (x) that connects
these two steady states is a zero energy phase trajectory of the Hamiltonian. The
models that we consider in this article are single-step processes so that r = ±1. For
such models, the optimal path will always have the general form

popt (x) = ln (w−1(x)/w1(x)). (7)

Using the definition of the conjugate momentum p = ∂S/∂x , the action Sopt along
the optimal path popt (x) is given by

Sopt =
∫ x0

xe
popt (x)dx . (8)
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32 L. Billings, E. Forgoston

Therefore, the mean time to extinction (MTE) to escape from xe associated with the
endemic state and arrive at x0 associated with the extinct state can be approximated
by

τ = B exp(NSopt ), (9)

where B is a prefactor that depends on the system parameters and on the population
size. An accurate approximation of the MTE depends on obtaining B.

This framework can easily be extended to systems if one is interested in exploring a
population, or group of populations, partitioned into homogeneous subgroups. Define
X as a vector describing the states of n populations X1, X2, . . . , Xn and follow the
derivation above. The complexity of exploring multi-population stochastic models
becomes apparent when considering the solution to the generalized set of Hamilton’s
equations

ẋj = ∂H(x1, . . . , xn, p1, . . . , pn)

∂p j
,

ṗj = −∂H(x1, . . . , xn, p1, . . . , pn)

∂x j
, j = 1, . . . , n (10)

wheren is the number of distinct population groups included in amodel. Thedimension
of the resulting Hamiltonian system is 2n.

In the following sections, we consider two types of epidemic models, with and
without seasonality, and employ the theory developed in this section to determine the
optimal extinction path for each of the models.

3 The SIS model

The Susceptible-Infected-Susceptible (SIS) model describes the possible spreading
dynamics of a disease, where individuals are not provided with immunity after infec-
tion but rather become re-susceptible.We use theWKB framework described in Sect. 2
on this simple model without seasonal variation as an illustrative example. We focus
on results that will be useful for analyzing the time-varying case. One can find a
complete, rigorous analysis of the autonomous SIS model in [14,27,28].

The SIS model consists of a finite population of N individuals divided into two
compartments: Susceptibles S and Infectives I . We now identify the flux terms for
these compartments. An individual is born susceptible, assuming a constant birth rate,
μ. Then, through contact modeled by amass action approximation, the individual may
become ill and be classified as infectious.We assume the contact rate, β0, is constant in
this section. Then, assuming an average recovery rate, γ , the individual recovers and
is returned to the susceptible compartment. Removal by natural death is possible from
both compartments, but we assume no disease-related deaths in this model. Figure 1
shows a schematic of the model’s compartments along with the transition events.

We also assume that the change in births and deaths maintain an average total
number of individuals in the population, N . Therefore, the number of susceptible
individuals can be approximated by the remaining population that is not in the I
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Fig. 1 A compartmental flow
diagram for the transitions in the
SIS model

Infection

Recovery
Natural
Death

IS
Natural
Death

Birth

Table 1 SIS model transitions
and associated rates

Event I transitions Scaled rate

Infection W−1 = β0(N − I )I/N β0(1 − i)i

Recovery W+1 = γ I γ i

Death W−1 = μI μi

0 5 10 15 20 25 30
t
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100

I

Fig. 2 A realization of the stochastic SIS model (without seasonality) with an extinction event. The param-
eters are β0 = 1.4, γ + μ = 1, and N = 200. The dashed red line represents the endemic steady state
(color figure online)

compartment, S = N− I , and the dynamics can be approximated by a single infectious
population. This is known as the constrained SISmodel and amore detailed analysis of
how this approximation varies from the full two-population SIS system can be found
in [29].

A list of all possible transition events for the I population is shown in Table 1. A
sample realization of this stochastic SIS model using these transitions is presented in
Fig. 2. AMonte Carlo algorithm [30] is used to evolve the population in time. Figure 2
shows that the population persists for a period of time near what appears to be a stable
steady state and eventually goes extinct. Spontaneous extinction is an example of a
rare event, and the following analysis aims to explain, predict, and possibly control
this class of dynamics.

Rescaling the population variables by the average population size N produces new
variables s = S/N and i = I/N , so that s = 1− i . Using these variables, we identify
the scaled transitions rates in Table 1. A master equation for the SIS example can be
formulated using Eq. (1) and these scaled transitions,

∂ρ(I, t)

∂t
= β0

N
((I − 1)(N − (I − 1))ρ(I − 1, t) − I (N − I )ρ(I, t))

+ (γ + μ)((I + 1)ρ(I + 1, t) − Iρ(I, t)). (11)
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34 L. Billings, E. Forgoston

After employing the theory described in Sect. 2, the resulting Hamiltonian for the SIS
model is found to be

H(i, p) = β0(1 − i)i(ep − 1) + (γ + μ)i(e−p − 1), (12)

where p is the conjugate momentum variable in this single population model.
As mentioned in the previous section, one can assume the WKB approximation to

the probability distribution if the system is quasi-stationary, which in this case is when
the probability current at the extinct state is sufficiently small. One can numerically
approximate the probability distribution by solving the master equation to check this
assumption. Two sample probability density functions for N = 200 are graphed in
Fig. 3. Notice that for R0 = 2, I = 0 is in the tail of the distribution, satisfying
the assumption of quasi-stationary. Conversely, the approximation for the probability
distribution associated with R0 = 1.1 shows a nonzero probability at I = 0. In this
case, extinction is not a rare event and the WKB framework does not apply. The
probability density function will asymptotically drift towards I = 0 with time.

Hamilton’s equations describe the dynamics of the augmented system and are given
as

di/dt = β0(1 − i)iep − (γ + μ)ie−p, (13a)

dp/dt = β0(2i − 1)(ep − 1) − (γ + μ)(e−p − 1). (13b)

The deterministic mean-field equation is then found by evaluating Hamilton’s equa-
tions when p = 0:

di/dt = β0(1 − i)i − (γ + μ)i. (14)

The mean field equation has two steady states: i = 0, called the extinct state, and
i = (1 − μ+γ

β0
), referred to as the endemic state.

The stability of the steady state solutions can be found by evaluating the eigenvalues
or equivalently, finding the basic reproduction number, R0. For this model,

R0 = β0/(γ + μ). (15)

0 50 100 150 200
I

0

0.01

0.02

0.03

0.04

0.05

ρ
(I

,t
)

R0 = 2

R0 = 1.1I = 18
I = 100

Fig. 3 Probability density functions for the stochastic SISmodel (without seasonality) for two values of the
reproductive number. For R0 = 2, the parameters are such that the system is quasi-stationary and extinction
is a rare event. The probability density function for R0 = 1.1 is not quasi-stationary and will asymptotically
drift towards I = 0 with time (color figure online)
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When R0 > 1, the endemic state is an attracting fixed point and the disease will
persist. Otherwise, the extinct state is attracting and the disease will die out. In the
problems presented in this paper, we assume parameters such that R0 > 1. To illustrate
the shortcomings of the mean field equation to properly capture observed dynamics,
note how the stochastic realization shown in Fig. 2 fluctuates about the deterministic
endemic state predicted by the mean field. Eventually, the solution escapes from this
state and approaches the (unstable) extinction state. This apparent violation of the
system dynamics is resolved by a careful analysis of Hamilton’s equations.

Comparing the solutions of the mean field equation to Hamilton’s equations, we
find the corresponding solutions on the p = 0 deterministic line: (i, p) = (0, 0) and
(i, p) = (1 − 1/R0, 0). In addition, a third solution (i, p) = (0,− ln(R0)), called
the fluctuational extinction state, represents a new disease-free solution with non-zero
momentum, distinguishing it from the deterministic extinct state (0, 0). Note that these
solutions are saddles in the (i, p) plane, rather than attractors or repellers. This allows
for metastability in the system and escape from one state to another.

To find the manifolds that connect these solutions, we find the analytical zero
energy solutions for the Hamiltonian. The solution i = 0 represents extinction; a
second solution is p = 0, which corresponds to the deterministic dynamics. The third
solution refers to the optimal path and is given by

p = − ln (R0(1 − i)) . (16)

The optimal path and steady states are graphed in the right panel of Fig. 4.
The time-dependent solutions on the optimal path can be found by using Eq. (16) in

Hamilton’s equations to reduce the dimension of the problem. In addition, by scaling
time by (γ + μ), one obtains

di/dt = (i − R0(1 − i)i)/(γ + μ), (17a)

dp/dt = (R0(e
p − 1) + (e−p − 1))/(γ + μ). (17b)
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Fig. 4 The optimal path for the stochastic SIS model without seasonality. The left panels display the time
dependence in Eqs. (17d) and (17d). The right panel shows the location of the steady states and zero energy
curves of the Hamiltonian, including the optimal path identified by Eq. (16). The parameters in all panels
are β0 = 2 and γ + μ = 1
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One can solve Eq. (17a) and substitute it into Eq. (16) to find the following explicit
solutions for the optimal path:

i(t − t0) = 1(
R0

R0−1

)
− e(R0−1)(t−t0)/(γ+μ)

, (17c)

p(t − t0) = − ln (R0 (1 − i0 (t − t0))) , (17d)

with t0 as an arbitrary initial time. These solutions are graphed in the left panels of
Fig. 4 and correspond to the time dependence of the optimal path from the endemic
steady state to the fluctuational extinction state in the right panel of Fig. 4. It should
be noted that in all numerical examples, we assume (γ + μ) = 1.

4 The time-dependent SIS model

Using the observation of periodic and aperiodic recurrence in diseases such asmeasles,
mumps, and chickenpox in pre-vaccine US data [31] and England and Wales data [3],
modelers identified that the contact rates, aswell as other parameters, may vary in time.
Mathematical models with periodic forcing developed to capture seasonal variation
were found to capture yearly and biennial outbreaks [32]. With the addition of random
perturbations, these models are also observed to exhibit switching between attractors
[33–35].We consider the SISmodelwith seasonal forcing incorporated into the contact
rate, and use the master equation formalism and WKB theory to provide additional
insight into the system’s dynamics.

The time-dependent SIS model follows the formulation in Sect. 3, but assumes
the contact rate varies throughout the year in a periodic fashion, approximated by the
function, β(t) = β0(1 + δ cos(2π t)), where δ is a small parameter. The Hamiltonian
system is defined as

H(i, p, t) = β(t)(1 − i)i(ep − 1) + (γ + μ)i(e−p − 1), (18)

with the corresponding Hamilton’s equations given by

di/dt = β(t)(1 − i)iep − (γ + μ)ie−p, (19a)

dp/dt = β(t)(2i − 1)(ep − 1) − (γ + μ)(e−p − 1). (19b)

A realization of this stochastic time-dependent SIS model is presented in Fig. 5. As
in the autonomous case, eventually the noise causes the population to go extinct.

The main goal of this paper is to motivate the need and lay the foundation to
extend the WKB framework for analyzing rare events in time-dependent versions of
epidemiological models. Previous work on activated escape from a metastable state
of a system driven by a time-periodic force include Dykman et al. [36] and Maier and
Stein [37]. We follow the rigorous treatment of a time modulated birth-death system
presented by Assaf et al. [24]. Following this work, we assume the amplitude of the
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oscillation in β(t) is small, 0 < δ � 1, and rewrite the time-dependent Hamiltonian
using a linear expansion in δ,

H(i, p, t) = H0(i, p) + δH1(i, p, t). (20)

The unperturbed Hamiltonian,

H0(i, p) = β0(1 − i)i(ep − 1) + (γ + μ)i(e−p − 1), (21)

was analyzed in the previous section, and the new time-dependent part is

H1(i, p, t) = β0(1 − i)i(ep − 1) cos(2π t). (22)

We can consider the dynamics using the associated Poincaré map, which is the pro-
jection of the time dependent trajectories of the nonautonomous system in the (i, p, t)
space on the (i, p) plane in unit time interval slices. In the perturbed system, the
steady states are also perturbed. For generic Hamiltonians, the existence of the per-
turbed hyperbolic points is guaranteed by the Poincaré–Birkhoff fixed point theorem.
While the extinction state remains unchanged, the others can be determined by

(i(t), p(t)) =
(
1 − γ+μ

β(t) , 0
)

endemic, (23)

(i(t), p(t)) =
(
0, ln

(
γ+μ
β(t)

))
fluctuational extinction. (24)

Figure 5 shows a single stochastic realization of the time-dependent system. One can
see that the population oscillates periodically, following the endemic limit cycle given
by Eq. (23).

To demonstrate that the system satisfies quasi-stationarity, we numerically approx-
imate the probability distribution by solving the master equation for N = 200. The
solution for the range t = [0, 5] is graphed in the left panel of Fig. 6. The solution at
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I

Fig. 5 A realization of the stochastic SIS model with seasonality exhibiting an extinction event is shown in
blue. The parameters are β0 = 1.4, γ +μ = 1, δ = 0.1, and N = 200. Note how the realization follows the
red curve representing the endemic limit cycle given by I (t) = Ni(t), using Eq. (23) (color figure online)
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Fig. 6 The left panel is a graph of the probability density function of the stochastic SIS model with
seasonality numerically approximated by the master equation. A contour plot of the same probability
distribution is in the right panel. The endemic limit cycle I (t) = Ni(t), using Eq. (23), is overlaid in both
panels as a red curve. The parameters are β0 = 2, γ + μ = 1, δ = 0.1, and N = 200 (color figure online)

t = 0 is overlaid in black and again repeated at t = 5, showing periodicity. Notice
that this is similar to the probability distribution graphed in Fig. 3. The right panel of
Fig. 6 shows a contour plot of the probability distribution. The endemic limit cycle
given by I (t) = Ni(t), using Eq. (23), is overlaid in both panels in red.

The existence of the perturbed hyperbolic fixed points is a necessary but not suf-
ficient condition for the existence of a heteroclinic trajectory connecting the unstable
manifold of the endemic state to the stable manifold of the fluctuational extinction
state. Using a linear theory approach for small δ, we assume that there exists a per-
turbed optimal path of H(i, p, t) described by the pair of equations i(t, t0), p(t, t0)
and that the action can be calculated along that path using

S =
∫ ∞

−∞

(
p(t, t0)

di(t, t0)

dt
− H0(i(t, t0), p(t, t0)) − δH1(i(t, t0), p(t, t0), t)

)
dt.

(25)
Note that the unperturbed Hamiltonian, H0, is invariant with respect to the specific
choice of t0.

We can quantify the change in the action due to the perturbation as S = S0 + ΔS,
noting the action for the unperturbed SIS model is

S0 =
∫ 0

1− 1
R0

− ln(R0(1 − i))di = ln(R0) − 1 + 1
R0

. (26)

Using the linear expansion in δ, the perturbed optimal path can be expressed as

i(t, t0) = i0(t − t0) + δi1(t, t0),

p(t, t0) = p0(t − t0) + δp1(t, t0),
(27)
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Seasonal forcing in stochastic epidemiology models 39

noting that the solutions for the unperturbed solutions for i0 and p0 are given in
Eqs. (17c) and (17d). As derived in Assaf et al. [24], the linear expansion of the
integrand of Eq. (25) results in the following approximation of ΔS(t0) to first order,

ΔS(t0) = −δ

∫ ∞

−∞
H1 (i0(t − t0), p0(t − t0), t) dt. (28)

In addition, the validity of the linearization approach to approximating the action
requires the change in action due to the perturbation to satisfy ΔS � S0.

To find the optimal correction to the action, we must minimize S(t0) with respect
to t0. Consider the zeros of its derivative,

dS(t0)

dt0
= −δ

∫ ∞

−∞
{H0, H1}0 dt = 0, (29)

where {H0, H1}0 is the Poisson bracket evaluated on the unperturbed optimal path. The
quantity

∫ ∞
−∞{H0, H1}0 dt is the Melnikov function of the perturbed problem, which

is proportional to the distance between the unstable and stable manifolds of perturbed
fixed points. A sufficient condition for the existence of the perturbed optimal path is
for the Melnikov function to have simple zeros. These zeros are the critical points of
the action, which yields the minimal action along the optimal path of the perturbed
problem.

For the SIS model, we evaluate the Poisson bracket to find

{H0, H1}0 = (μ + γ )2R0 cos(2π(t − t0)) i0(t − t0)
(
2 − 3i0(t − t0)

+(i0(t − t0) − 1)ep0(t−t0) + (2i0(t − t0) − 1)e−p0(t−t0)
)

. (30)

Therefore, the Melnikov function has simple zeros and the perturbed optimal path
exists. We can then numerically evaluate Eq. (29) to identify a periodic set of zeros,
which identify the phase for the optimal correction. For example, the parameters
β0 = 2 and γ +μ = 1 yield the phase t0 = 0.3068528194+n, (n = 0,± 1,± 2, ...).

To numerically explore the dynamics of an extinction event, we use Hamilton’s
equations to approximate the optimal path connecting the endemic state and the fluc-
tuational extinction state. The system of equations that describes the time evolution
for each variable are

di/dt = i(γ + μ) − β(t)i(1 − i), (31a)

dp/dt = β(t)(ep − 1) + (γ + μ)(e−p − 1). (31b)

Because of the time dependence, these equations cannot be explicitly solved. There-
fore, we must numerically approximate the solutions using the appropriate phase
defined by the initial time t0.

The left panels of Fig. 7 show the numerical solutions of i(t) and p(t) found using
the implicit Matlab solver ode15i. In order to validate the numerical solution, we
compared the results with those found using the Iterative Minimizing Action Method
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Fig. 7 The numerical approximation of the optimal path for the stochastic SIS model with seasonality. The
parameters are β0 = 2, γ + μ = 1, and δ = 0.1, unless otherwise noted. The numerical approximations of
the separate time dependent solutions for the implicit ODEs given by Eqs. (31a) and (31b) are shown in the
left panel. The δ = 0 case is also plotted in green as a reference. The implicit ODE solutions are plotted
together as (i(t), p(t)) in the right panel in black. The approximation of the optimal path found by using
the IAMM numerical scheme is also graphed in the right panel in red. The agreement is excellent (color
figure online)

(IAMM), a completely different type of numerical scheme [38]. The IAMM is a
minimum action method [39,40] based on Newton’s method that computes optimal
transition pathways in systems of stochastic differential equations, and details can be
found in “Appendix A”. The IAMM, like any scheme involving Newton’s method, is
sensitive to the initial condition. A poor initial guess may lead to erroneous results
including convergence to a curve that is not the optimal path or even no convergence.
One can use a variety of methods to obtain a good initial condition [41]. For the time-
dependent SISmodel, the solution for the δ = 0 case was found by using a line of 1600
points connecting the beginning and end points, and then a continuation algorithmwas
used to to find corresponding solutions as δ was increased to 0.1. The right panel of
Fig. 7 shows excellent agreement for the time-dependent optimal paths found by using
the two different numerical methods.

5 The SIR model

The Susceptible-Infected-Recovered (SIR) model describes a disease that confers
immunity after recovery from infection. This type of model is the foundation for
which the analysis of outbreaks in diseases such as chicken pox, mumps, pertussis,
and measles are based. A refinement by London and Yorke [31] introduced latency,
or a delay in the time from exposure to infectiousness. This aspect extended the SIR
model to the SEIR model. Their work inferred seasonality in the contact rates from
existing US data. Additionally, Fine and Clarkson [42] verified the correlation of
measles outbreaks in England and Wales data to the opening and closing of school
terms. Despite the fact that measles dynamics was considered to be extremely well
explained by seasonally driven deterministic models at that time, the approach did not
sufficiently capture the dynamics for the observed data of other diseases. Rohani et
al. [43] demonstrated that stochasticity still plays a significant role in these models.
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Therefore, we revisit the stochastic, seasonally forced SIR model using the WKB
framework.

In the SIR model, the population is composed of three compartments: Susceptibles
S, Infectives I , and Recovered R. The flow between compartments is similar to the SIS
model, but after the individual has recovered, the individual moves to the recovered
(and immune) compartment, rather than becoming re-susceptible. Removal by natural
death is possible fromall three compartments, andwe assumeno disease-related deaths
in this model. Figure 8 shows a schematic of the model’s compartments along with
the transition events.

Because the system is overdetermined, we can assume R = N − S − I and use
the state variable X = (S, I ) to represent this model. A list of all possible transition
events for the S and I populations is shown in Table 2. A realization of this stochastic
SIRmodel (without seasonality) using these transitions is presented in Fig. 9. It shows
a solution where the population persists for a period of time, oscillating about what
appears to be a steady state, before going extinct.

Fig. 8 A compartmental flow
diagram for the transitions in the
SIR model

Natural
Death

Birth

Natural
Death

Natural
Death

RecoveryInfection RIS

Table 2 SIR model transitions and associated rates

Event S transitions I transitions Scaled rate

Birth W+1 = μN μ

Infection W−1 = β(t)SI/N W+1 = β(t)SI/N β(t)si

Recovery W−1 = γ I γ i

Death W−1 = μS W−1 = μI μs, μi

0 50 100 150 200 250 300
t

0

20

40

60

80

100

I

Fig. 9 A realization of the stochastic SIR model (without seasonality) with an extinction event. The
parameters are β0 = 2, γ=1, μ = 0.1, δ = 0, and N = 600. The dashed red line represents the endemic
solution, I = Ni(t) given by Eq. (37b) (color figure online)
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A master equation for the SIR example can be formulated using Eq. (1) and the
scaled transitions in Table 2. The resulting Hamiltonian is

H(s, i, ps, pi ) = μ(eps − 1) + β(t)si(e−ps+pi − 1) + γ i(e−pi − 1)

+ μs(e−ps − 1) + μi(e−pi − 1), (32)

where ps and pi are the conjugate momentum variables associated with the scaled s
and i variables, respectively.

The analytical zero energy solutions for the Hamiltonian again help identify the
locations and paths between the metastable states. The solution i = 0 represents
extinction, and a second solution, ps = pi = 0, corresponds to the deterministic
dynamics. In this case, we cannot analytically determine the third solution that corre-
sponds to the optimal extinction path.

Hamilton’s equations are found by evaluating the partial derivatives,

ds/dt = ∂H(s, i, ps, pi )/∂ps, di/dt = ∂H(s, i, ps, pi )/∂pi (33)

dps/dt = −∂H(s, i, ps, pi )/∂s, dpi/dt = −∂H(s, i, ps, pi )/∂i, (34)

which results in the four-dimensional system

ds/dt = μeps − β(t)sie−ps+pi − μse−ps , (35a)

di/dt = β(t)sie−ps+pi − γ ie−pi − μie−pi , (35b)

dps/dt = −β(t)i(e−ps+pi − 1) − μ(e−ps − 1), (35c)

dpi/dt = −β(t)s(e−ps+pi − 1) − (γ + μ)(e−pi − 1). (35d)

The mean field equations, determined by evaluating Hamilton’s equations when
ps = 0 and pi = 0, are

ds/dt = μ − β(t)si − μs, (36a)

di/dt = β(t)si − γ i − μi. (36b)

This system exhibits two steady state solutions when there is no forcing, δ = 0
and β(t) = β0. There is an extinct state and an endemic state, with their stabilities
depending on the basic reproduction number, R0 = β0/(γ + μ). The extinct state,
(s(t), i(t)) = (1, 0), is stable when R0 < 1 and the endemic state is stable when
R0 > 1. Except for a very small parameter region close to R0 = 1, the steady state can
be classified as a spiral sink with complex eigenvalues. In the deterministic setting,
solutions will asymptotically oscillate towards the steady state in a spiral fashion.
When simulating the associated stochastic model, this underlying oscillatory structure
impacts the dynamics. Note that in Fig. 9, the time series exhibits oscillations for the
SIR model without seasonal forcing.

The endemic steady state is perturbed by the forcing to become a limit cycle
described by, (s(t), i(t)) = (

γ+μ
β(t) ,

μ
β(t) (

β(t)
γ+μ

− 1)). At higher amplitude forcing, the
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Fig. 10 The numerical approximation of the optimal path for the stochastic SIR model found using the
IAMM method. The blue curve is the solution for system with seasonal forcing (δ = 0.005), with the
left panel displaying (s, i, ps ) and the right panel displaying (s, i, pi ). As a reference, the solution for the
system without seasonality (δ = 0) is graphed in red, with a projection of just the (s, i) variables below in
black. The parameters are β0 = 105, γ = 100, and μ = 0.2 (color figure online)

limit cycle will double in period. A careful treatment of the derivation of the stability
of the steady states of the periodically forced SIS model can be found in Glendin-
ning and Perry [44]. This work derives the conditions for which the system undergoes
a Takens–Bogdanov bifurcation, after a sequence of subharmonic bifurcations, and
results in chaotic dynamics.

Returning to Hamilton’s equations to study the stochastic SIR model with seasonal
forcing, we identify three solutions on the zero-energy curves:

(s(t), i(t), ps(t), pi (t)) = (1, 0, 0, 0) extinction, (37a)

(s(t), i(t), ps(t), pi (t)) =
(

γ+μ
β(t) ,

μ
β(t)

(
β(t)
γ+μ

− 1
)

, 0, 0
)

endemic, (37b)

(s(t), i(t), ps(t), pi (t)) =
(
1, 0, 0, ln

(
γ+μ
β(t)

))
fluctuational extinction.

(37c)

The IAMMmethod is used to compute the optimal extinction path from the endemic
solution to the fluctuational extinction state. The solution for the δ = 0 case was found
by using a line of 1600 points connecting the beginning and end points, and then a
continuation algorithm was used to to find corresponding solutions as δ was increased
to 0.005. The results for both δ = 0 and δ = 0.005 are shown inFig. 10. The parameters
follow the optimal path results in [22]. Note the fluctuations in the pi component,
but not the ps component, as the solution approaches extinction ((s, i) = (1, 0)),
which agreeswith the fluctuational extinction solution identified inEq. (37c). Rigorous
analytical results similar to the approach presented for the SISmodelwill be the subject
of future work.

6 Conclusions

In this article we have motivated the analysis of a variety of stochastic epidemic mod-
els and outlined a general methodology that allows one to compute rare events such
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as the optimal path to extinction. As we have described in the introduction and in
Sect. 2, we transform the original stochastic problem into a new deterministic sys-
tem described by a Hamiltonian that has twice the dimensions as that of the original
system. For simpler systems, such as the SIS model without seasonality described in
Sect. 3, one can analytically find the optimal path to extinction. For more complicated
time-dependent systems, like the ones described in Sects. 4 and 5, we use analytic per-
turbation expansions along with numerical computations to find the perturbed optimal
path to extinction.

Knowledge of the optimal path is extremely useful since it enables one to find the
mean time to extinction from the endemic state, which can be verified by stochas-
tic realizations. For the SIS model without seasonality (Sect. 3), the mean time to
extinction can be analytically determined by evaluating the action along the optimal
extinction path. Using the expression in Eq. (9), we find

τ = B exp

(
N

∫ 0

1− 1
R0

ln

(
γ + μ

β0(1 − i)

)
di

)
(38a)

= R0

(R0 − 1)2

√
2π

N
exp

(
N (ln(R0) − 1 + 1

R0
)
)

. (38b)

For the othermodels presented in this paper, the integral given byEq. (8) that quantifies
the action can be computed numerically in a straightforward manner by using the data
provided by the IAMM method.

Once the mean time to extinction is determined, it is possible to quantify the effect
of various control schemes on an infectious disease. For example, Khasin et al. [45]
identified the resonant effect of vaccination pulses in an SIR model and derived an
optimal vaccination protocol that can speed up extinction when the vaccine is in short
supply. Billings et al. [29] considered the effect of treatment for the SIS model, and
showed an exponential improvement in extinction times. In the future, we plan to study
how control, including vaccine and treatment, affects the mean time to extinction for
epidemic models that include seasonal forcing.

Appendix A: Iterative Action Minimizing Method (IAMM)

To analyze the dynamics of spontaneous escape from an endemic state, we numer-
ically compute the optimal path, which is a zero-energy curve for the Hamiltonian
that connects two steady state saddle points. We use the Iterative Action Minimizing
Method (IAMM) [38], a numerical scheme based on Newton’s method. The IAMM
is useful in the general situation where a path connecting steady states Ca and Cb

starts at Ca at t = −∞ and ends at Cb at t = +∞. A time parameter t exists such
that −∞ < t < ∞. For this method, we require a numerical approximation of the
time needed to leave the region of Ca and arrive in the region of Cb. Therefore, we
define a time Tε such that −∞ < −Tε < t < Tε < ∞. Additionally, C(−Tε) ≈ Ca

and C(Tε) ≈ Cb. In other words, the solution stays very near the equilibrium Ca for
−∞ < t ≤ −Tε , has a transition region from −Tε < t < Tε , and then stays near Cb
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for Tε < t < +∞. The interval [−Tε, Tε] is discretized into n segments using a uni-
form step size h = (2Tε)/n or a suitable non-uniform step size hk . The corresponding
time series is tk+1 = tk + hk .

The derivative of the function value qk is approximated using central finite differ-
ences by the operator δh given as

d

dt
qk ≈ δhqk ≡ h2k−1qk+1 + (h2k − h2k−1)qk − h2kqk−1

hk−1h2k + hkh2k−1

, k = 0, . . . , n. (39)

Clearly, if a uniform step size is chosen then Eq. (39) simplifies to the familiar form
given as

d

dt
qk ≈ δhqk ≡ qk+1 − qk−1

2h
, k = 0, . . . , n. (40)

Thus, one can develop the system of nonlinear algebraic equations

δhxk − ∂H(xk,pk)
∂p

= 0, δhpk + ∂H(xk,pk)
∂x

= 0, k = 0, . . . , n, (41)

which is solved using a general Newton’s method. We let

q j (x,p) = {x1, j ...xn, j ,p1, j ...pn, j }T (42)

be an extended vector of 2nN components that contains the j th Newton iterate, where
N is the number of populations. When j = 0, q0(x,p) provides the initial “guess” as
to the location of the path that connects Ca and Cb. Given the j th Newton iterate q j ,
the new q j+1 iterate is found by solving the linear system

q j+1 = q j − F
(
q j

)

J
(
q j

) , (43)

where F is the function defined by Eq. (41) acting on q j , and J is the Jacobian.
Equation (43) is solved using LU decomposition with partial pivoting.
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